

Priority Queues and Refactoring

10-12-2011

Opening Discussion

 Do you think you should be allowed a 1-page
cheat sheet for the exam?

Priority Queue ADT

 A priority queue has the same methods as a normal
queue, only the contents are ordered not only be
arrival time, but also by a priority. So dequeue gets
the highest priority object and if several have that
priority, it gets the one that has been there the
longest.

 One way to implement a priority queue is with a
sorted linked list. To make this flexible, you could
have it take a comparison function that tells you the
ordering. That would be provided when the priority
queue is constructed. Or require Ordered.

 What order are the various operations for this
implementation of a priority queue?

Code a Priority Queue

 Let's write a priority queue that uses a doubly-
linked list with a sentinel.

 We'll also made a trait because we will implement
other versions later.

Refactoring

 This is something that you do when you don't want to
change the functionality of your code, but you want to
change how it does something.

 You typically refactor your code when it “smells.” Here
are a few of the many different smells.
 Long method
 Large class
 Duplicate code
 Shotgun surgery
 Switch statements

 Scala tools don't yet refactor well, but the language
does.

Recursion

 You should have learned about recursive
functions in 1320. A recursive function is simply
a function that calls itself.

 You can use recursion to imitate loops, but we
won't do that very often in C/Java/Scala. Where
recursion comes in really handy is when a
function needs to test more than one alternative
at a time.

 This works nicely because the call stack
remembers where you are in a given function
so when you return back, you can take off from
that point again.

Maze Solving

 One of my favorite recursive algorithms is maze
solving. This is a special case of graph
traversals which are common problems in CS.

 We'll use a 2D array of Ints as our maze and
we can even put this into our drawing program.

 I want to write code to find the shortest path
through a maze or count all paths through a
maze.

 We can try to make this nice and graphical as
well so it fits properly into our drawing program.

Formula Parsing

 Another one of my favorite recursive algorithms
is formula parsing. This allows us to have the
user type in a function and our code can
evaluate it.

 We do this through “divide and conquer”. We
split the formula in two across the lowest
precedence operator then recursively evaluate
the two halves.

 We can use this to put function plotting into our
program if we give it the ability to handle a
variable.

Minute Essay

 Can you think of uses for priority queues in your
project?

 Review session on Sunday. I'll send an e-mail
with the time.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9

