

Grammars

10-31-2011

Opening Discussion

 Minute essay comments:
 Using a comparison that returns an Int instead of a

Boolean.
 Duplicate keys?

 Unbalanced trees.
 Code from last time.
 How many of you have used regular

expressions before?

Formal Languages

 Today we will introduce the concept of formal
languages and grammars.

 These are formal sets of rules for building
strings. The rules determine what strings are in
a particular language.

 There are many ways of specifying languages.
We will focus on the one that is most broadly
used today.

Chomsky Grammars

 Noam Chomsky developed a hierarchy of
grammar types that could be used to specify
different languages.
 Regular
 Context-Free
 Context-Sensitive
 Recursively Enumerable

 Each of these can also be associated with a
different type of machine or automaton.

Nature of Chomsky Grammars

 Chomsky grammars have terminals and non-
terminals. Normally a terminal is lowercase and
a non-terminal is uppercase.

 There is a special non-terminal called the start
symbol, S.

 A string in “complete” when it contains only
terminals.

 Rules specify what a non-terminal can be
replaced with.

Regular Grammars

 The simplest Chomsky grammar type is the
regular grammars. There are only two types of
allowed rules:
 A → a
 A → aB

 Note that 'A' and 'B' represent any non-
terminals and 'a' is any terminal.

 Equivalent to a finite state automaton. Have no
memory.

Context-Free Grammars

 Allow more general rules:
 A → γ

 Where γ is any combination of terminals and
non-terminals.

 Equivalent to a pushdown automaton. Has
memory, but only as a stack.

 These are how we specify the syntax of
programming languages. Can describe almost
all natural language.

Context-Sensitive Grammars

 Takes surrounding characters into account:
 αAβ → αγβ

 Equivalent to a linear bounded non-determinstic
Turing machine.

 Not used all that much because of challenges.
Needed for some elements of natural language.

Recursively Enumerable
Grammars

 Allows basically any transformation.
 α → β

 There are no bounds on what these can be.
 This is equivalent to a Turing machine. That

means that you could calculate anything you
want using one of these.

Regular Expressions

 One if the applications of these formal systems
is the use of regular expressions to perform
String operations.

 Scala has a class called
scala.util.matching.Regex. You can get one of
these by calling the r method on a String.

 This wraps the functionality of
java.util.regex.Pattern and provides Scala style
functionality and pattern matching.

 Let's look at API entries.

Minute Essay

 Questions?
 There is an IcP next class.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

