

Multithreading

9-12-2011

Opening Discussion

 Minute essay comments
 Maps and Buffers in projects.
 Analysis is required for this project.

Motivation

 The future is parallel.
 Core counts are growing but clock speed isn't

and neither is single thread performance.
 Software developers are behind the curve on

this.

Basic Approach

 You can use the java.lang.Thread class to
represent a thread.

 Pass it a new Runnable that you define a run
method in and call start to make it go.

 This makes it very easy to start new threads,
but there are significant pitfalls when mutable
memory is involved.

join

 The join method of Thread will block until that
thread has finished working.

 This is something you can do when you want a
computation to continue only after each of the
threads has completed.

 This only works if you are completely done with
those threads.

Synchronization

 Threads use shared memory and you don't get
significant control over what happens when.

 Race conditions are errors that occur because
of dependence on timing details.

 Bank example.
 You can synchronize on objects to make sure

critical blocks aren't accessed in parallel
 obj.synchronized { … }

 Slow and can cause deadlock.

wait/notifyAll

 Allows synchronization between threads. A
thread can wait and it won't restart until another
thread notifies it.

 Put wait in while loop that checks boolean.
 Always use notifyAll instead of notify. Failure to

do so leads to deadlocks.

Code

 I want to get commands working so that we can
play with some of this in the drawing program.

Minute Essay

 How many cores does your computer have?
Have you ever tried to keep them all busy?

 The next IcP is Wednesday.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9

