
1

Design Patterns 1

2-29-2002

Opening Discussion

❚ What did we talk about last class? Do you
have any questions about assignments?

❚ Did you do the reading? What are design
patterns? What do they help us with?

What are the patterns that were in the
reading for today?

❚ Templates and separate compilation in
C++.

Design Patterns

❚ Certain things that you want to do in
programs come up repeatedly. General

solutions to these are often called design
patterns.

❚ Understanding and being able to use
design patterns can make your life

programming easier, but they are not

without their pitfalls as the code to do
them can be complex at times.

2

Functors

❚ Classes that have no data are sometimes
called functors. Especially if they have

only one method in them and they are
used as arguments to templated

functions.

❚ A functor class allows the flexability of

easily passing a function as an argument

to another function. This can be helpful
for things like sorting on different keys.

Writing Functors

❚ You can have a functor where the method
is a normal method with some appropriate

name. This is how you would do it in
most OOPLs.

❚ In C++ you have the ability to overload
the function call operator, operator(), to

take different numbers of different types

of arguments. When you invoke these
you use the functor like a function.

Wrappers

❚ Sometimes you want to add an extra layer
of abstraction on top of a given data type.

This is most common when the data type
is a primitive and the default behavior

isn’t exactly what you want it to do.

❚ With a wrapper class you create a class

that stores the primitive type, but has a

more appropriate interface for doing what
you want it to do.

3

Adapters

❚ At times you might have a class that does
something you want, but the interface on

it isn’t quite right. This could be
especially true if you are going to use it

with templates and the template functions

or classes require certain methods of the
class.

❚ An adapter uses private inheritance to put
a new interface over the old one.

Details

❚ All of these patterns we discussed today
gain significance from templates. In some

cases they are things that you wouldn’t
want to even do without templates

(adapters). In others, the templates

make them fast and efficient (functors).

Minute Essay

❚ We might have a use for functors in the
project so that you can have a sorted list

that gets sorted on different aspects of
SubStr. It might even be helpful for

assignment #3. Write a functor class

where the method takes two SubStr
objects and compares them in some way.

❚ Remember that the design for assignment
#3 is due today.

