
1

Analysis of Algorithms

3-6-2002

Opening Discussion

❚ Do you have any questions about the
quiz?

❚ What did we talk about last class? Do you
have any questions on assignment #3?

❚ From the readings, who can tell me what
algorithm analysis is and why we are

interested in it. What did you get out of
today’s reading?

What is Algorithm

Analysis?

❚ One of the things that we are very
interested in in computer science is

making programs that can handle large
problems efficiently (quickly). We have a

formal way of talking about how efficient

an algorithm is.

❚ In this we quantify how the amount of

work a program does varies with the input
size of the program, n.

2

Work? Input Size?

❚ Typically when we do an analysis we
focus on certain operations and how many

times they are performed. This is not
done with exactly the running time of the

computer. We might count additions,

multiplications, comparisons, copies, etc.

❚ By input size we mean some measure of

how big the problem we are working on
is. Often number of “elements” being

worked upon.

Counting Operations

❚ After picking the type of operation(s) we
are interested in, we then want to be able

to express that as a function of n.

❚ For simple dependencies this can typically

be done by noticing the nature of the
loops in the program. This logic in the

innermost loop typically dominates the

order of an algorithm.

❚ For recursive algorithms other tricks must

be employed.

O() Notation

❚ The way you will typically here the order
of a program referred to is with the big-O

notation. So an algorithm will be called
O(f(n)) for some f(n).

❚ In simple terms this means that the
amount of work done by the algorithm

increases with n in the same way that f(n)

increases with n.

3

What it Really Means

❚ To be more formal, define g(n) as the
actual number of operations that occur for

an input of size n, then g(n) is O(f(n)) iff
there exists positive C and m such that

g(n)<C*f(n) for n>=m.

❚ Note that C and m are finite constants

that do not vary with n. This means that

if you can find such numbers, no matter
how big they are, g(n) is O(f(n)).

Notes about O()

❚ Notice that coefficients are thrown out
and that in general we only care about

the largest term. All other terms become
insignificant when the input size becomes

very large.

❚ Asymptotic Analysis: This notation matters

most when the input size is large. It can

actually be meaningless for runtimes if the
input size of the program is small.

Other Notations

❚ There are other bounds you should be
aware of too.

)()()()())(()(

)()()()())(()(

)()(,))(()(

)()(,))(()(

nngnOngnfong

nngnOngnfng

mnnCfngmCnfng

mnnCfngmCnfOng

Θ≡/∧≡↔≡
Ω≡∧≡↔Θ≡

≥∀≥∋∃↔Ω≡
≥∀≤∋∃↔≡

4

Minute Essay

❚ What is the order of a search on a linked
list? What about for building a sorted

linked list? What will the order be on
assignment #3 if you use a linked list?

❚ I want to distribute a code set solving
assignments #1 and #2, but once I do so

I can’t accept any more submissions for

assignment #2.

