
1

Analysis of Algorithms 2

3-8-2002

Opening Discussion

❚ What did we talk about last class? Do you
have any questions about the

assignment?

❚ Did anyone pay much attention to the

example problem in section 6.3? I think
that problem is very instructive as to how

we could look at problems to make better

solutions. The best one is not at all
straightforward.

Not Always the Same

❚ Code rarely does the same number of
instructions, even on the same input size.

Most of the time we have conditionals
that cause the path to vary depending on

the exact nature of the input.

❚ For this reason we sometimes discuss

different orders to the same algorithm.

❙ Best-case, worst-case, average case

2

Best and Worst Case

❚ Some problems have certain inputs that can

cause them to behave very good or very poorly.
For example a flagged bubble sort is O(n) on

sorted data.

❚ The case where the algorithm does the fewest

operations is called the best-case. Because it is
rare we typically don’t care about it.

❚ The worst-case is also rare, but we do worry

about it because it can “break” our code if a
worst-case input is given and it takes too long

to complete.

Average-Case

❚ Most of the time what we worry more
about is the average case performance.

❚ For this we look at every “step” in the
program and decide how many operations

it will perform with “no particular” input.

❚ This is what we will typically look at

though in some cases when the worst-
case is different we will also mention it.

Logarithms

❚ The log function is the inverse of the
exponential function. It is a function that

we often like to see when doing analysis
in the log function. The log function is a

very slowly growing function. In fact, log

n is of lower order than nx for any x>0.

❚ We typically arrive at orders involving logs

when we divide the “size” of a problem
repeatedly.

3

Example - Searching

❚ One of the things that we frequently want
to do with computers is to search through

data. This is actually something that you
have already had extensive experience

with from assignment #2 and assignment

#3.

❚ What order this operation is depends on

the data structure and the data in it. For
a linked list it is always O(n).

Unsorted Data

❚ If the data is unsorted then it doesn’t
matter what the data structure is because

you always have to keep searching until
you find it. This means that in the worst

case you will look at all n elements of the

collection. In the average case you might
find it in n/2, but that is still O(n).

Binary Search

❚ If data is sorted and we have some way
of accessing data from the “middle” of the

sort order, then we can do searches
faster.

❚ We are able to do this because we can
look at data in the middle and determine

if what we are looking for is above or

below that. The part it isn’t in gets
ignored. This gives up O(log n) time.

4

Minute Essay

❚ What do you intend to do over spring
break?

❚ I’ll be posting code for assignment #1 and
#2 before the end of the day. Right after

spring break I will do the same for #3.

❚ Have a great spring break!

