Mergesort and Quicksort

3-24-2002

Opening Discussion

What did we talk about last class?

Do you have any questions about
assignment #4? Have you thought much
about how you will be parsing the HTML
to get out links?

What do you know about mergesort and
quicksort? How do they work? What are
their advantages and limitations?

Recursive Sorts

Last class we looked at some standard
sorts that can be very easily implemented
with nested loops and worked in O(n?)
time. We also looked at a more
sophisticated sort called Shellsort that
could finish in under quadratic time.
Today we are looking at two sorts that are
most easily written with recursion and
work in O(n log n) time on average. They
are both examples of divide and conquer.




Mergesort

The “simpler” of the two sorts we will

discuss today is mergesort. This sort

does basically no work in dividing the

problem, but instead does most in the
“conquer” stage at the end.

It divides the array it needs to sort in two
and calls itself with each half, obviously
assuming they will return with them
sorted.

Mergesort Continued

When those calls return it runs through
them picking the smallest from each and
moving it to a new array. This produces a
sorted version of the original array.

The base case is when there is only one
element left.

The downfall here is that you have to
have a second set of memory to copy
things into. This makes the recursion a
bit more difficult to write.

Analysis of Mergesort

Mergesort goes through repeated
divisions by 2 implying that it recurses
down log n levels.

At each level it has to do O(n)
comparisons and copies implying that the
total work done is O(n log n). This is both
a worst and average case performance.
The performance of mergesort is quite
unaffected by the nature of the input.




Quicksort

Another standard recursive sort is the one
called quicksort. Quicksort fixes the
problem of needing second array to copy
things into. It also moves where the work
is done to the divide stage with nothing
really to do after the recursive calls
return.

Quicksort picks a pivot and moves all the
items less than the pivot to one side. All
items greater are on the other.

Quicksort Continued

It then recurses for each side of the pivot
until you get down to a base case.

The key is in picking the pivot. Simple
techniques include always using the first
or picking at random. These produce O(n
log n) average behavior, but O(n?) worst
case.

By doing more comparisons you can pick
a pivot close to the median.

Analysis of Quicksort

On average a randomly selected pivot will
be around the median. Because it isn't
always, we can get more than log, n
recursions, but average case it is only a
small constant factor. Worst case you
always pick something near the beginning
or end which causes O(n) recursions and
0O(n?) overall performance.




Minute Essay

Assume you have a quicksort that chooses
the first element for the pivot at each
step. Do a trace of the sort of this array:
{5,2,8,3,9,1}.

Just a reminder, I also like into input or
questions you might have.

Remember that the design for assignment
#4 is due today and Quiz #5 is on
Wednesday.




