
1

Structures

1-21-2002

Opening Discussion

❚ What did we talk about last class?

❚ What is a structure?  What do they allow

us to do?

❚ Connect-4 Code

❙ Let’s now finish the connect-4 code that we

started thinking about in the last class.

❙ Think of the interface that we need.  What

implementations could we write to get this
interface to work?

Strings

❚ Last class we talked briefly about vectors,
but not about strings.  The string class is

a handy way to represent character
strings in C++.  It is typically

implemented as a vector of chars.

❚ I recommend that you use the string class

for strings in this course, but you can feel

free to use null terminated character
arrays if you want also.



2

Reference Variables

❚ C++ adds the concept of reference
variables that hadn’t been there in C.

❚ They are basically like pointers only they
can only be set at declaration, and they

are implicitly dereferenced.

❚ While they aren’t much use as local

variables, they are commonly used for
function arguments and return values.

❚ Should use const when possible.

Structures

❚ A structure is a collection of objects,
potentially of different types.  Elements

are referred to by names instead of
integers.

❚ Structures are helpful for when we have
entities that should be grouped together

in a logical way and should always stay

together.

❚ These same abilities exist in classes so we

won’t use structures much, if ever.

Pointers to Structures

❚ Each structure in C++ is a type, and just
with other types, you can have pointers to

them.

❚ When you want to access a member of a

structure that you have a pointer to you
typically use the “->” notation.  This is

short for a dereference followed by a dot

to access the member.



3

Copying Structures

❚ If you don’t overload the ‘=‘ operator for
a struct doing this will simply do a direct

copy of the members that are actually in
the structures.

❚ Your book refers to those members as
indigenous.  Members that are

represented by pointers so the data for

the member is outside the struct are
exogenous.

Deep vs. Shallow Copying

❚ This default copy behavior is called a
shallow copy.  You should be aware of it

because it can have unwanted side effects
where changing something in one object

will change another object that you didn’t

want to alter.

❚ Overloading operator= is typically done to

produce a deep copy.  This uses more
memory and can have its own pitfalls.

Minute Essay

❚ What did we discuss today?  Was
everything we discussed clear to you?

What have you thought about the text so
far?

❚ Remember that you can put down any
feedback you want on the minute essay.

❚ Next class you have your first quiz.  Make
sure you show up on time and that you

have done the reading.


