
1

Details of Classes

1-25-2001

Opening Discussion

❚ What did we talk about last class? Do you
have questions about the quiz? I have

posted answers on the web.

❚ Did anyone else write anything on the
Connect-4 game?

❚ I have posted a description of your first
assignment on the web. The design is
due a week from today and the code is

due 2 weeks from today.

Questions from Students

❚ Public or Private?

❙ When should methods and members be

public and when should they be private?

❚ Dynamic memory

❙ What is the syntax for allocating and

deallocating dynamic memory? More
importantly, what does it mean? When

should we be doing it?

2

The this Pointer

❚ One thing that can be helpful to be able
to do in a method is to have access to the

object the method is being called for.
This is done through the this pointer.

❚ You have access to the this pointer in all
methods and can use it like any pointer to

an object of that type. In many ways it is

like an unspecified first argument to all of
those calls.

Type Conversions

❚ Last class we briefly mentioned how
single argument constructors are used by

C++ to do type conversions.

❚ Conversions are not transitive. An implicit
cast will only be done is there is a “direct
route”.

❚ You can also overload typecasting
operators so that an object can be cast to

another type.

Operator Overloading

❚ Another ability you have with classes in
C++ is that of overloading operators.

❚ This allows you to write expressions
involving objects just like you would write

expressions with primitives.

❚ It can be done in two ways, either by
writing operator methods, or by writing
stand alone operator functions. These

functions are often friends of the class.

3

Input and Output

Operators

❚ You can also overload the bit-shifting
operators that C++ uses with the

iostream libraries.

❚ Doing this allows you to place objects of
that class type in standard iostream
expressions and have it work.

❚ Note that all of this is for convenience, it
isn’t required for you to be able to output

a class.

Avoiding Friends

❚ While often the easiest way to write stand
alone function operators for a class is to

make that function a friend of the class, it
is better to try to reduce the number of

friend classes used at much as possible.

❚ Putting appropriate accessors and other
functions in the class to help non-friend

operators is often a better route to take.

Exceptions

❚ Exceptions are a way to signal errors in
code that can’t be easily ignored. The

fact that it can’t be easily ignored makes it
somewhat better than other methods of

communicating errors.

❚ You throw and exception with the throw

operator. Unfortunately they aren’t

handled well in C++. The book will deal
more with exceptions later as will we.

4

Minute Essay

❚ One thing that should be clear at this
point is that using classes and objects in

C++ properly is not a trivial matter. What
features of classes in C++ do find

interesting or think will be helpful? What

features do you think cause more
problems than they are worth.

❚ I’ll be playing basketball from noon until
about 2pm.

