
Linked Lists

2-20-2004

Opening Discussion

 What did we talk about last class?
 Do you have any questions about the

assignment?
 References doesn’t imply faster.
 Can you tell me what a linked list is and

what is significant about them?

Array Based Queue
Implementation

 Let’s go back to our code and look at
what we have then finish up our array
based queue implementation.

The List as an ADT

 A more powerful abstract data type than
the stack or queue is the list. Lists allow
random access of elements so that you
can add, search, and remove at will. As
with the stack and the queue, the
implementation can vary.

 Java has an interface for List in the
java.util package that you can look at to
get an idea of what a list should do.

Array Based Lists

 Just like with the stack and the queue, we
can implement lists using arrays. That
implementation though has some
drawbacks to it.

 The main problem is that random
insertions and removing require lots of
copying, though we can jump to random
elements quite quickly.

Linked Lists

 An alternate implementation of a list is
using what are called Linked Lists. A
linked list is a list where each element
knows only about its neighbors.

 The simplest form of this is a singly linked
list where each element knows about the
next element in the list. If you keep track
of the first one you can get to the entire
list by following the links.

Nodes

 Each element of the list is typically called
a node. The node “stores” the data that
we need as well as the
references/pointers to the other node(s)
that it is linked to.

 The node class is not the linked list class.
They are distinct types, though the linked
list class will use the node class. We can
make the node a private static inner
class.

Heads and Tails

 One feature of a linked list is that you
always have to keep track of at least one
element in it. For a singly linked list it has
to be the first one, the head.

 Sometimes it is also helpful to keep track
of the last element of the list as well, the
tail.

 Other references would be either short
lived or for optimizations.

Inserting

 Linked lists excel at inserting and
removing. Inserting at the beginning is
very easy. Same is true for the end if we
keep a tail.

 Inserting into the middle requires walking
the list and keeping track of the previous
element in the list. This is because you
insert after elements and can’t walk the
list backwards.

Removing

 Removing elements from a list is a very
similar operation. In this case, we walk
the list to find the element, keeping track
of the previous one, then set the “pointer”
to go around it.

Circular Linked Lists

 It is also possible to build a list where the
“tail” points back to the “head”. In this
case those two terms really aren’t all that
well defined.

 Instead we can have a pointer anywhere
in the list. We still can’t walk backwards,
but we can walk all the way around to get
to anything we want.

Doubly Linked Lists

 Another variation on lists that can be
useful is the doubly linked list. In a
doubly linked list, every element knows
both the one before it and the one after
it. With this added in, you can delete an
element without walking the list, or add
one without having to go looking for the
previous one.

 These require a bit more work.

•Sentinels

 One way to help simplify linked list code,
especially for doubly linked lists, is to add
a sentinel.

 This is a special node that signifies an
“end” of the list. We can put it at the
beginning and the end by making it list
circular.

Code

 Now let’s write some code to do a singly
linked list.

 If time permits we can also look at the
ImageEditor and how to use it with your
code. As well as code to directly import
and image.

Minute Essay

 What questions do you have about linked
lists? Can you think of an application
where you would want to use a linked list
instead of an array?

