
Exceptions in Java

3-23-2004

Opening Discussion

 Do you have any questions about the quiz?
 What did we talk about last class?
 Do you have any questions about the

assignment?
 When you have a function in which

something goes wrong, how does it tell the
rest of the program? Do you always put in
code to make sure the functions you call
execute properly?

Midterm Results
 The median grade on the exams was

exactly an 80.

A B C D F
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

Testing Code

 Something closely related to today’s topic
is that of testing code. That is something
that you should be doing. In some cases,
just running the game does a fairly good
test, but it isn’t always the easiest one to
debug.

 Remember that in Java you can put a main
in any class. You should put a main in
things like your linked list class where all
you do is test and print out stuff.

Error Handling

 In the code that you are probably used
to, there are two ways that a function can
tell you if an error occurred.
 Return an error code.
 Set a flag that should be checked.

 Both of these are very easy to ignore
which can lets the errors “propagate” and
makes debugging much more difficult.

Enter Exceptions

 An alternate approach to error handling is
the use of exceptions. As their name
implies, exceptions are things used for
exceptional events.

 When an error occurs, the code will
“throw” an exception. When an exception
is thrown control pops up the stack until
code is found to handle it. If no handler
is found that thread exits completely.

try, catch, and finally
Blocks
 There are 4 syntactic components of dealing with

exceptions. The ones you will write most are try
and catch blocks.

 When you have a section of code that can have
an exception thrown in it that you want to
handle, you put it in a try block.

 After the try block you can have one or more
catch blocks. Each one specifies a type and
catches anything of that type (including
subtypes).

 A finally block is like a default. In addition, it
ALWAYS happens.

throws and throw

 Sometimes a method can have an
exception occur in it, but it doesn’t know
how to handle it. In this situation, the
exception should be added to the throws
clause of the method declaration.

 If you want to throw your own exceptions
you use the throw statement. It is
followed by an object that is the
exception to be thrown.

Checked vs. Unchecked
Exceptions
 There are two broad categories of

exceptions.
 Checked exceptions must either be caught, or

they must appear in the throws clause of the
method.

 Unchecked exceptions don’t have to do this and
often shouldn’t be handled. If an unchecked
exception arises it typically signifies a major
problem and the code should crash.

 Subtypes of RuntimeException are
unchecked.

Benefits of Exceptions

 Exceptions are nice because they can’t be
ignored. They tell you there is a problem
immediately instead of letting the code
run on until it has a serious problem or
just leaving logic errors.

 The Exception class also has handy
methods like printStackTrace() that can
be used to help with the debugging
process as well.

Code

 Let’s go look in the javadocs at some of
the function calls that can throw
exceptions then write some code that
deals with those exceptions.

Minute Essay

 The line new FileInputStream(fileName)
can throw two exceptions. Look those up
in the javadocs, and write code that
would catch them and print out semi-
meaningful messages.

 Assignment #4 is due today.

