
Graphics in Java

3-26-2004

Opening Discussion

 What did we talk about last class?
 Do you have any questions about the

assignment? Remember that the design
for assignment #5 is due today.

Drawing on Your Own

 Sometimes you want to have more control
than just using the GUI components
provided by the Java libraries. In these
situations you might want to have custom
control over what gets drawn to the space
inhabited by a given component.

 The power and quality of this was
enhanced with the Graphics 2D library.

Overriding the paint
Method
 The way that you can control what is drawn

on a component is to override the paint
method of that component (for Swing use
paintComponent). This means that you
need to create a subclass of a component.
I typically do custom components from
JPanels.

 The paint method takes a
java.awt.Graphics object. What you draw
with that object shows up on the
Component.

The Graphics Class

 The Graphics class encapsulates basic
drawing operations with the data that
tells how they should be drawn.

 There are methods to draw, or fill, basic
shapes (lines, ovals, rectangles, polygons)
as well as images and strings.

 A variety of set methods tell it how to
draw those things.

The Graphics2D Class

 If you are using Swing, the Graphics
object will actually be an instance of
Graphics2D. We’ll talk more about the
power of this next class, but with it, you
will typically draw with the draw(Shape s)
and fill(Shape s) methods.

 Shape is very powerful and flexible, but
they provide some standard shapes in the
java.awt.geom package.

Clipping

 The process of clipping is really setting
what part of a surface you will draw to.
You can set a rectangular region or a
shape and anything that would be drawn
outside of that region doesn’t get drawn.

 Normally the clipping region is set to be
the size of the component. You can set it
smaller to make sure things are located to
a smaller region.

Colors

 You can set what color to draw with. The
way you do this is by giving the Graphics
object a Color object. With Graphics2D
you should instead use setPaint. Color is
a subclass of Paint.

 There are a number of predefined Color
objects for standard colors. You can also
define arbitrary colors using constructors
that take red, green, and blue values.

Fonts

 You can also set what font you want the
Graphics object to use when you draw
text to it.

 The potential complexity rises a fair bit
here, but you can easily create Font
objects by providing a standard font
name, style, and size (see API for
details).

 Finding the size of the strings drawn in
the given font requires using LineMetrics
objects.

Code

 Let’s look at and write some code to
create a JPanel that does custom drawing
and has some type of interaction with the
user.

More Advanced Graphics

 Next class we will continue to discuss the
more advanced features of Java2D.

 There is also an option Java package
called Java3D that allows you to do 3D
graphics fairly easily. You can look on the
web for details though teaching it is
beyond the scope of this class. It also
makes code less portable because it is not
standard and required either OpenGL or
DirectX to run.

Minute Essay

 What did we talk about today? What do
you think about the project and how it is
going so far? Is having the large project
helping or hindering your ability to learn
about object-orientation?

 I will be around for a while after noon,
but at 2pm I'll be leaving for SwRI to give
an invited talk.

