
Recursion

4-1-2004

Opening Discussion

 What did we talk about last class? Let's
go look at the code that was started and
possibly add just a bit more to it.

 Do you have any questions about the
assignment?

 What is a recursive function? Why do we
use them? What are they good for?

What is Recursion?
 A recursive function in mathematics is

one that is defined in terms of itself. In
computer science it is a function that calls
itself.

 Mathematically these functions have a
general relation for most input values as
well as some defined “termination”
values.

 The Fibonacci numbers are a nice
example of a recursive function, but we
can also define factorial recursively.

Recursion and the Stack

 Java and most other modern
programming languages use a stack for
function calls. The stack is a section of
memory that sits at one end of the
memory that program owns.

 Each function gets a stack frame that
holds local variables and arguments to
the function. Calling functions push these
frames and returns pop them.

Recursion and Loops

 The simplest recursive functions are
basically loops. They call themselves
once and have an argument that works as
the iteration variable.

 The call to itself has to be conditional.
Otherwise it is like an infinite loop, but
you get a stack overflow when it runs out
of memory.

The Power of Recursion
 Recursive functions are truly powerful

when they call themselves more than
once. Converting these types of function
to loops requires significant reworking of
the logic (at best).

 The stack is what enables this because
with the stack the flow of control can go
off in one direction, then return to the
function and go off in another direction.

 These functions have “tree” call structures.

floodFill

 You are probably all familiar with the
option in paint programs that allows you
to “pour” in paint to fill a region of a
picture. How would you do this with
loops in a program?

 With recursion we just write a function
that calls itself four times. Because of the
memory of the stack, it can go “around
corners”.

Maze Problems and Graph
Traversals
 By adding a bit of extra logic to a floodFill we can

turn it into a function that searches through
mazes. 2D mazes are a special example of the
general category of graphs. A graph has vertices
that are connected by edges.

 The key to these problems is that we want to
leave behind “bread crumbs” to mark our path
and pick them up as we backtrack.

 We can also can leave other markers that can
help speed up our algorithms depending on what
we are doing.

Divide and Conquer
 Another common usage of recursive

functions is in divide and conquer
algorithms. In these, we repeatedly
break a problem down into smaller pieces
until we get to a point where we can
solve it easily. We then combine the
partial solutions to find a full solution.

 Some extremely simple examples could
be finding the sum of the elements of an
array or the min of them.

String Parsing
 Another fun application of divide and

conquer is string parsing for things like
equations. Here we break the problem
up around the lowest priority operator
and recursively parse smaller sections if
the formula, then deal with them as we
move back up the stack.

 With just a little more work, this type of
method can be turned into a very
powerful tool.

Minute Essay

 Write code for a function that counts the
number of different paths from a point in
a maze to an exit assuming you can’t
cross back over your path. Do this using
a maze that is a 2D array of characters.

 Quiz #5 will be next class.

