
Files and Streams

4-20-2004

Opening Discussion

 Do you have any questions about the
quiz?

 What did we talk about last class?
 Do you have any questions about the

assignment?

Motivation
 One of the most important things we do

on computers is store and access large
collections of data. Typically this is done
with files.

 File access comes in two flavors, random
and sequential. Files of the latter type
are often called streams. In a stream the
basic operation is to get or put the next
byte of data, though more elaborate
wrappers can be put around that.

java.io Package

 The normal way of doing I/O in Java is
with the classes in the java.io package.

 This package has an elaborate class
hierarchy with different classes that play
the different roles for almost everything
you want to do.

 There are also some special classes that
perform specific tasks like the
RandomAccessFile class.

InputStreams and
OutputStreams

 The most basic classes in java.io are the
InputStream and OutputStream classes.
These are the base classes for dealing
with streams of bytes.

 Let’s look in the documentation to see the
methods of these classes. The most
significant ones are the read and write
methods though the others can be
important for different tasks.

Streams vs.
Readers/Writers

 The stream classes handle reading and
writing bytes. For text data it can be
easier to read and write character data.
This functionality is provided by the
Reader and Writer classes.

 Personally, I’ve never really seen the
need for these classes, but if you do text
input it could be helpful.

Plentiful Subclasses

 All of these classes have multiple
subclasses to give you more specific
abilities. We can look at these in the
docs.
 File versions for I/O with files.
 Piped versions for connecting different

streams.
 Buffered streams for better speed.
 Data and object streams we will discuss next

class.

Basic Text Input?

 One thing that you might notice is missing
is the ability to do basic text input. We
can do text output with a PrintWriter, but
there is no equivalent for input in Java.

 This design decision was based on the
idea that programs rarely need to do
general text file reading. BufferedReader
allows reading lines of text that can be
parsed.

The File Class

 One other helper class in java.io is the
File class. This class represents a specific
file and allows us to get information about
files. It is written in a way to be largely
platform independent.

 This class also gives us the basic
functionality that we would like to have
when interacting with files.

JFileChooser

 For programs that use files, it is often
nice to bring up a GUI component to let
the user pick a file. This can be quite a
pain. Java makes it easy by providing a
class that automatically views and selects
files.

 By simply creating and “showing” one of
these, we can very easily have the user
specify a file for our program to work
with.

Code

 Let’s write a simple little text editor
program that uses a GUI and allows us to
edit text files.

 We will also use some File objects even
though we could avoid them.

Minute Essay

 Why is inheritance used so much in the
java.io package? How might having it
work that way help you in your
programming?

 Remember that design #7 is due on
Thursday.

