
Files and Streams

4-22-2004

Opening Discussion

 What did we talk about last class?
 Do you have any questions about the

assignment?
 Writing and reading one byte at a time

gives you enough power to do anything,
but it isn’t optimal for most things. We’d
like to be able to write other things as well.
 How would you go about doing that?

Binary Files
 Most of the time, the way that we want to

store real data in files is in binary format.
For everything but strings, this takes a lot
less space than storing string equivalents
and is faster to read and write.

 With a binary file, we can write ints,
doubles, and other primitives as well as
strings. The files won’t be human
editable, but we can write code to read
them back in.

Making Streams from
Streams
 One of the keys to being able to use the

java.io library is to notice that many
stream types have constructors that you
pass other streams to.

 These create new streams that have
different functionality and use the stream
that is passed to them to send the data.
In effect, you are wrapping one stream
inside another to get different
functionality for the same source/dest.

Data I/O Streams

 To do basic binary I/O in Java we use the
DataInputStream and DataOutputStream
classes. These can’t exist “on their own”.
We use them to wrap another stream that
actually goes somewhere.

 These classes provide us with the
functionality to read and write basic
types.

 Let’s look at these classes real quick.

Object Streams
 We can write pretty much any class out to

a stream by writing one component at a
time, but doing so can be painful.
Sometimes we want to be able to write an
object as a single entity.

 In Java we can do this with
ObjectInputStream and
ObjectOutputStream.

 This is something that most languages
don’t support.

Serialization

 Writing objects to streams is also called
serializing them. The object streams can
only work with two types of data:
primitives and Serializable. For an object
to be serialized it must be Serializable and
all its members must be either primitives
or Serializable.

 Members that are declared transient are
not serialized.

More on Serialization

 Serialization is an incredibly powerful tool.
 When combined with reflection in Java it
lets us do things that aren’t possible in
most languages.

 “With great power comes great
responsibility.” This is true in comics and
in programming. You have seen some of
the difficulties of using serialization and
there are many more.

Code

 Let’s write some code that will write an
object in binary format, then do the same
thing with serialization.

Minute Essay

 What are the benefits of “wrapping”
streams around one another? Another
stream type that does this is the buffered
stream. How can we use this to get
better performance for a data stream?

