
Java Basics

1-22-2004

Opening Discussion

 What did we talk about last class?
 What are the basic constructs in the

programming languages you are familiar
with? From reading or prior knowledge,
how are those constructs different in
Java?

 Minute essay comments

UML Class Diagrams
 UML stands for Unified Modeling

Language. It is a formal graphic
representation of software analysis and
design. There are many types of UML
diagrams, but we will mainly be looking at
class diagrams.

 In this diagram classes are represented
by boxes.

 Java also has things called interfaces that
we will look at more a little later.

Inside a Class

 The box for each class is divided into three
regions. The top one contains the class
name and possibly some modifiers.

 The second region has attributes of the
class. Typically these are specified with a
visibility modifier followed by name:type.

 The third region holds operations
(methods). They are displayed in a similar
format but arguments can follow the
name.

Modifier Symbols

 Any of the attributes of operations can be
modified with a symbol showing visibility.
 + for public
 # for protected
 - for private

 Attributes can also be preceded by a ‘/’ in
some design tools to show that a given
attribute is read only. Note that attributes
aren’t always member data.

Class Relationships

 In the diagram a subclass points to the class that
it inherits from with an arrow with a closed head
(more on what this means in two classes).

 An open header arrow in UML also gives us a way
to denote when two classes are associated with
one another is some way. Typically this implies
that one class has attributes whose type is the
other class.

 Associations can be labeled with a name telling
what type of association it is.

 Example: Screen has grid of Blocks

Documentation Comments

 In Java, comments that start with /** are
documentation comments. These comments are
used by javadoc to produce HTML documentation.

 These comments should go above all classes and
methods. Inside the comment you start with a
summary sentence then have a paragraph
describing the class or method. After that can
come certain “tags” that begin with @.

Java as a Language

 In Java everything is in classes. There are
no free standing functions or global
variables. Also, the code for methods
always goes inside the class declaration.

 All methods and members are individually
given public or private specification. They
can also be declared static or final. Final
implies they can’t be extended by
inheritance. Final variables can’t be
changed after initialization.

Java Libraries

 One of the real powers of Java is it’s
libraries. These are grouped into
packages. (You could specify packages
for your code but we won’t discuss that
this semester.)

 For example, the class System is in the
java.lang package. The full name of the
class is java.lang.System.

No Preprocessor Directives

 You import so you don’t have to type in
full package names. This looks similar to
#include in use, but it is quite different.

 No #define in Java. For constants use
static final variables. For macros just use
functions.

 There is also no conditional compilation in
Java so #ifdef, #ifndef, etc. don’t exit.
Assert has been added in 1.4.

Primitive Types in Java
 Java is not purely object-oriented because

it does have primitive types. These types
are boolean, char, byte, short, int, long,
float, and double.

 Note that booleans and chars are NOT
ints in Java (though you can cast chars to
ints). This is significant because the
statement if(v=3)does not compile.
This helps cut down on bugs but might
seem restrictive in some cases.

Primitives as Classes

 When you need to represent a primitive
type as a class there are some classes in
java.lang that can help.

 They are classes like Integer and Double
that are basically wrapper classes.

 They do have some nice functionality in
static methods as well like
Integer.parseInt(String s).

 These classes are immutable.

Java References vs.
Pointers
 In Java when you declare an object you

are really declaring a reference to an
object. This is like a pointer but you can’t
do pointer arithmetic. To get a real object
you use the new operator. New is like
malloc and returns a heap object.

 All objects are gotten with new so all
objects exist on the heap.

 null is a universal symbol for references
that don’t point to anything.

More on Objects

 There is no operator overloading in Java. You
write and call normal methods instead.

 Doing = or == with object references assigns or
compares references. Think of them as pointers
without the *.

 Use a copy constructor to copy and equals() for
value comparison.

 No -> or * (deref) operator because things are
implicitly dereferenced.

Garbage Collection

 Java has automatic garbage collection.
There is no delete operator (no free).

 When you are done using an object and
you have no more reachable references
to it, the system can determine this and
free up the memory for it.

 As a result, you can allocate objects much
more freely because you don’t have to
worry about freeing them.

Arrays

 Arrays in Java are actually objects. An array type
is denoted by placing [] after the normal type.
When you do a new you are allocating the array
object. If the items in it are objects you still
have to allocate the individual objects.

 This is really nice for inclusion polymorphism.
 You use them like you would in C/C++, though

they do have a length member that you can
access to find out how many elements are in an
array.

Strings

 Like arrays, strings are a class in Java,
called String. Literal strings in Java are
objects of that class too.

 This class is in the java.lang package.
Note that java.lang is the one package
that is implicitly imported so you don’t
have to use the import statement to refer
to the classes in it directly.

Exceptions
 Java tries to prevent sloppy error handling by

providing exceptions instead of requiring
programmers to check return codes.

 try blocks surround code that might throw
exceptions.

 catch blocks follow a try block and specify what
type it is waiting for.

 finally catches everything and always happens.
 If an exception type can be thrown but isn’t

caught, it must be in the throws clause of that
method. Not true for RuntimeExceptions.

Inheritance in Java
 Java allows inheritance for subtyping and

reuse like C++ does.
 Java has single inheritance of classes, but

it also has things called interfaces. You
can have multiple inheritance of
interfaces.

 An interface is like a class except that it
only has method signatures. Classes that
implement it have to define those
methods or be abstract.

Java and the JVM

 Java code does not typically compile to
executable format directly. Instead it
compiles to bytecode that is stored in .
class files. The bytecode was designed to
be very small so that it can be easily
moved across the net or put on small
devices. It also allows code to run on
many platforms without recompiles.

 In addition, this allows classes to be
dynamically loaded.

Let’s Code

 Now we will sit down and write a bit of
code just to show you what it looks like.
We’ll do this until time comes for you to
start minute essays.

Minute Essay

 Both the String class and the primitive
wrapper classes in Java are immutable.
This means that once created they can’t
be changed. How does using classes like
this impact your programming? It can
have both good and bad effects. What
are those?

