
Inheritance in Java

1-27-2004

Opening Discussion
 What did we talk about last class?
 How many of you have looked in the book

at the chapters I have asked you to read?
 How are you coming on your
assignments? Remember that designs
are due by midnight tonight and code is
due on Thursday.

 Read project description.

Immutability
 Immutability can be very significant in how it

impacts your programming. In fact, the entire
paradigm of functional programming is based on
immutability.

 Immutable objects are good because they can
prevent bugs, especially in Java where all object
variables are references. They are bad because
they can produce extra allocations though the
safety can reduce allocation.

 This isn’t the same as const in C/C++, nor is
final the same as const.

Exceptions

 Java tries to prevent sloppy error handling by
providing exceptions instead of requiring
programmers to check return codes.

 try blocks surround code that might throw
exceptions.

 catch blocks follow a try block and specify what
type it is waiting for.

 finally catches everything and always happens.
 If an exception type can be thrown but isn’t

caught, it must be in the throws clause of that
method. Not true for RuntimeExceptions.

Java and the JVM

 Java code does not typically compile to
executable format directly. Instead it
compiles to bytecode that is stored in .
class files. The bytecode was designed to
be very small so that it can be easily
moved across the net or put on small
devices. It also allows code to run on
many platforms without recompiles.

 In addition, this allows classes to be
dynamically loaded.

Passing Variables

 In C you could choose to pass by value or
reference. In Java everything is basically
passed by value, but all the objects are
reference variables so you are still passing
a reference.

 You can’t have multiple primitive returns.
Instead, you should return a class that
stores the multiple values you want to
return.

Inheritance

 We have mentioned inheritance in each
of the last two classes.

 As I said two classes ago, normal
inheritance plays two roles in
programming.
 When class B inherits from class A, it “reuses”

all the non-private methods and members of
class A.

 B also becomes a subtype of A.

Inheritance Hierarchies

 The standard way of drawing out
inheritance is through a tree-like
hierarchy.

 In UML the arrows point from the
subclass to the superclass. This is
because the superclass doesn’t generally
know of all of its subclasses but the
subclasses know of the superclass.

Inheritance for Code Reuse

 The first side effect of inheritance is
gaining “copies of” non-private members.

 This means that if A had a public method
foo() then B will also have a public
method foo().

 In the assignment I mentioned that
MainFrame inherits from
javax.swing.Jframe and gets the show()
method from it.

Virtual Functions

 One of the powers of Java is that you
don’t always have to use the methods
defined by the superclass. You can
override them in the subclass.

 Methods that can be overridden are called
virtual methods. By default all methods in
Java are virtual.

 A method invocation uses the definition
“closest” to the actual class.

Final Keyword

 If you have a method that you don’t want
to ever be overridden, you can declare it
as final.

 You can also declare an entire class to be
final in which case no subclasses can ever
be written to inherit from it.

Abstract Keyword

 You can declare a method in a class that
doesn’t have an implementation. This
method must be labeled as abstract.

 Any class that contains abstract methods
must also be labeled as abstract.

 You use abstract functions when a
superclass doesn’t have a good default
implementation so all subclasses should
override it and give their
implementations.

Inheritance for Subtyping

 Inheritance also provides subtyping. This
is in part because the subclass has all the
public methods and members of the
superclass.

 Formally, when we say that B is a subtype
of A, what we are saying is that any place
in the code where an A is expected, a B
can be used, or a B can always take the
place of an A.

Inclusion Polymorphism

 This ability to substitute subtypes in place
of supertypes is what leads to inclusion
polymorphism.

 Inclusion polymorphism is a form of
“universal polymorphism” because there
are an infinite number of possible
subclasses for any given class (assuming
it isn’t final).

Inclusion Polymorphism in
the Project

 Inclusion polymorphism is what allows my
code to work with what you are going to
be writing.

 You are going to create subtypes of the
types I have defined. My code works with
the supertypes and through inclusion
polymorphism it will work with your
subtypes as well.

Single Inheritance of
Classes

 Java only allows single inheritance of
classes. That is to say that a class can
only inherit from one superclass.

 This greatly simplifies code by reducing
ambiguity. C++ has multiple inheritance
which causes one to frequently need to
specify which superclass of a given class
a method should be called through.

Interfaces

 Of course, C++ has multiple inheritance
for a reason, there are many times when
you want one type to be a subtype of
several supertypes.

 To deal with this Java has interfaces. An
interface is much like a class, but contains
only method signatures (all methods are
abstract). They have no implementations
and no member data.

Interfaces Continued

 Java allows multiple inheritance from
interfaces because they can never create
ambiguity.

 Implementing an interface only provides
subtyping, not code reuse.

 Subtypes of interfaces need to implement
all of the methods of that interface or
they will be abstract.

The Project

 Now that you know a bit more about
Java, let’s look real quick at the project
framework and some more specifics
about what you are going to be doing
during the semester.

Let’s Write Code

 Now we will use the rest of the time to
write some code in Together that
demonstrates a bit more about Java and
inheritance as well as Together and what
you can do in it. We’ll also talk about the
running example for the semester.

Minute Essay

 Inheritance is a very powerful tool, but it
does have pitfalls. Can you think of what
some of the problems might be with using
inheritance? If not don’t worry, they can
be subtle so then write any questions you
have about inheritance or how it is done
in Java.

 Remember that your assignment #1
design is due today and the code is due
on Thursday.

