
Sorting, Searching, and
Manipulating Arrays

2-10-2004

Opening Discussion

 What did we talk about last class?
 Do you have any questions about

assignment #2?
 For the minute essay last time I asked

you to allocate two different 2D arrays of
shape. Let’s take a second to look at how
that is done.

 What do you remember about sorts from
PAD1?

Sorting

 One of the things that we want to be able
to do on computers with any sequential
collection is to sort the elements of that
collection. Here are several “slow” sorts
that you should know of.

 Bubble Sort: Repeated passes swapping
out of order adjacent elements. Elements
“bubble” to far end. O(n2)

Meaning of O
 You probably saw this O-notation in

PAD1, but didn’t have it formally
introduced.

 Formally an algorithm is O(f(n)) for a
given operation if for input size n, the
number of operations, g(n), obeys the
following rule.

 Notice this only matters for large input
sizes.

)()(*,:, mgmfcnmcn 

More Sorting

 Selection Sort: Each pass you find the
min/max of what is left unsorted and
swap it to the end. O(n2)

 Insertion Sort: Walk through each
elements, inserting it into the earlier
elements. O(n2)

 Optional: Shell’s Sort: Repeatedly does
insertion sort on subsets made with
“diminishing gaps”. O(n3/2) or so.

Searching

 The other activity we are typically
interested in doing with collections is
searching for items in them.

 With a general collection all we can do is
a sequential search where we walk
through all the elements until we find
what we want. Obviously, if you do this
frequently, it can be a bit slow. O(n)

Fast Searching
 If you have a sorted array you have other

options. The most common of which is a
binary search.

 Start by looking in the middle of the
array. If it is what you are looking for
then you are done. If it is bigger than
what you want you only have to look on
the bigger side and the opposite is true
for smaller values. Repeat this always
cutting the size in half. O(log(n))

java.util.Arrays

 This is a “Utility” class that has only static
methods in it. All the methods in it work
with arrays.

 It includes methods for sorting and
searching. While you probably won’t be
using this directly in this class, it is a very
good thing to know about because it can
make your work faster in the future.

Polymorphism and Code
 One of the big things we’d like to be able

to get from Java that was hard for us to
get in C is polymorphic sorting. It would
be nice to write one sort and have it work
with many types. There are two ways to
do this.
 Work with Comparable interface.
 Pass in a comparator.

 Now let’s write up two sorts and a binary
search that will work polymorphically.

Minute Essay

 Do you have any questions about the
sorting or searching algorithms? Is it
clear how polymorphism lets us write one
algorithm for any object type in Java?

 Remember that design #2 is due today
and the working code is due on Thursday.
 Your design needs to have all the
methods you expect to write with
comments.

