
Objects, Classes, and UML

1-18-2004

Opening Discussion
 I hope everyone had a nice weekend. What did

we talk about last class?
 Have you thought about possible project ideas?

Keep in mind that the design for the assignment
is due next Tuesday. You should read the project
description on the web page under the links.

 Did anyone read any of “From C to Java”? I
didn't get any typos and since I haven't proofed it
even once I'm guessing that means it wasn't read
much. Perhaps that will change after today.

What is Object-
Orientation?

 This is actually a very difficult question to
answer because it is hard to get people to
agree. The one term that almost
everyone will agree is part of object-
orientation is encapsulation.

 Encapsulation is the binding together of
data and functionality into entities called
objects. This often also includes being
able to hide some data and functionality.

Objects
 An object is basically a set of data

(attributes) that has certain functions
associated with it. The functions (called
methods, behaviors, or operations) can
act on the data for that object.

 In many ways, an object in an object
oriented program is much like an object
in the real world. It has certain things
that it can do (methods) and data
describing a state.

Objects Continued
 Keep in mind that an object represents a

single entity and gives the data for that
entity.

 For example, computer is not an object.
Your computer is an object. This is a
significant distinction to make. The object
itself represents a single entity, not a
class of entities.

 Calling a method of an object is often
referred to as sending it a message.

Classes
 As the name implies, a class represents a

class of objects. In some ways, a class is a
blueprint for objects of a given type. Just
as a blueprint for a car is not a car, a class
is not an object. A class defines a type.

 What you will write in your code are
classes. (Note that not all object oriented
languages are class based.) You get to
specify in some general way what types of
object you have in your program.

Classes Continued
 In Java objects are instances of a class.
 When a method is called on an object it has

access to all the attributes of that object.
 Java is not 100% object-oriented because it has

primitive types that aren’t objects and aren’t
instances of any class. This was done for
efficiency.

 When talking about classes we often talk about
their interface or “public interface”. This is the
set of methods and attributes that are used by
other objects.

Classes vs. Structs

 Classes are similar to structs. They add a
lot more though. A struct was a blueprint
for a collection of data and you could
make instances of it by declaring
variables of that type or using malloc to
get the memory.

 A class can have data just like a struct,
but it can also have the member functions
that manipulate that data.

Inheritance: Short Version

 Class based OOPLs typically also allow
classes to “inherit” from one another.

 Inheritance implies two things. The name
comes from the fact that the inheriting
class (subclass) gets operations and
attributes from the inherited class
(superclass). It also implies a subtyping
relationship. Example: Honda inherits
from Car and Accord inherits from Honda.

Polymorphism: Short
Version

 The term polymorphism technically means
“many shapes”. In programming, it
implies that something works with many
types. The subtyping aspect of
inheritance plays a role here.

 A function that works on Cars should work
with any instance of any subtype of Car
as well. For example, you could give it
my instance of Accord and it should work.

Basics of Classes in Java

 All functions in Java are methods of some
class. There are no stand alone
functions.

 Classes, attributes, and methods each
have a visibility attached to them.
 public - can be used by anything
 package private - can be seen by all classes in

this package (this is the default)
 protected - can be used by subclasses
 private - can be used only by methods of that

class

this and Using Members

 When you are writing a method of a
class, it has direct access to the member
data and methods of that class. You
don’t have to use the ‘.’ notation.

 To be explicit, you can use the ‘this’
keyword which implies the object that the
method was invoked on.

static

 The term static in the C-family languages
implies something like “there is only one”.
 This is true in Java as well.

 A static member or method is associated
with the class itself, not with an
object/instance of that class.

 They can be reached or invoked without
having an object of that class too.

main in Java

 Like C/C++, Java programs always begin
in a special method named main.
However, in Java main is a static method
of a class (remember there are no stand
alone functions). Every class can have its
own main which can be very helpful for
debugging.

 The signature of main is
 public static void main(String[] args) { }

UML Class Diagrams
 UML stands for Unified Modeling

Language. It is a formal graphic
representation of software analysis and
design. There are many types of UML
diagrams, but we will mainly be looking at
class diagrams.

 In this diagram classes are represented
by boxes.

 Java also has things called interfaces that
we will look at more a little later.

Inside a Class
 The box for each class is divided into

three regions. The top one contains the
class name and possibly some modifiers.

 The second region has attributes of the
class. Typically these are specified with a
visibility modifier followed by name:type.

 The third region holds operations
(methods). They are displayed in a
similar format but arguments can follow
the name.

Modifier Symbols

 Any of the attributes of operations can be
modified with a symbol showing visibility.
 + for public
 # for protected
 - for private

 Attributes can also be preceded by a ‘/’ in
some design tools to show that a given
attribute is read only. Note that
attributes aren’t always member data.

Class Relationships
 In the diagram a subclass points to the class

that it inherits from with an arrow with a closed
head (more on what this means in two classes).

 An open header arrow in UML also gives us a
way to denote when two classes are associated
with one another is some way. Typically this
implies that one class has attributes whose type
is the other class.

 Associations can be labeled with a name telling
what type of association it is.

 Example: Screen has grid of Blocks

Documentation Comments

 In Java, comments that start with /** are
documentation comments. These comments are
used by javadoc to produce HTML
documentation.

 These comments should go above all classes and
methods. Inside the comment you start with a
summary sentence then have a paragraph
describing the class or method. After that can
come certain “tags” that begin with @.

Minute Essay

 Do you have any questions about
assignment #1 at this point? Remember,
your design is due to me next Tuesday.

 Over the next 3 classes I will be running
through Java basics as well as more
details on inheritance and OOP. Were
there any aspects of today’s class that
you felt were unclear and would like to
hear again in more detail?

