
More Inheritance,
Polymorphism, and Java
Stuff

1-27-2005

Opening Discussion

 What did we talk about last class?
 Remember that the code for assignment

#1 should be submitted to me today by
midnight. Does anyone have any
questions about the assignment?

 Does anyone want to show a problem?
 Submitting assignments.

Minute Essay Responses

 Why does one abstract method force a
whole class to be abstract?

 Code examples and code for the project.
I do not show code directly related to the
project in class.

 General confusion and not understanding
code in Java. The method is you create
objects and then invoke methods that
make objects interact.

Difficulties with Inheritance

 One significant problem can be frailty. You have
to think about the public interfaces of base
classes very carefully because when you have
many subclasses it is almost impossible to change
them. Also worry about public methods that call
other public methods.

 A subclass that doesn’t implement everything
probably shouldn’t be a subclass.

 Finding the methods in superclasses in deep
hierarchies. They don’t show in UML.

Single Inheritance of
Classes

 Java only allows single inheritance of
classes. That is to say that a class can
only inherit from one superclass.

 This greatly simplifies code by reducing
ambiguity. C++ has multiple inheritance
which causes one to frequently need to
specify which superclass of a given class
a method should be called through.

Interfaces

 Of course, C++ has multiple inheritance
for a reason, there are times when you
want one type to be a subtype of several
supertypes.

 To deal with this Java has interfaces. An
interface is much like a class, but contains
only method signatures (all methods are
abstract). They have no implementations
and no member data except constants.

Interfaces Continued

 Java allows multiple inheritance from
interfaces because they can never create
ambiguity.

 Implementing an interface only provides
subtyping, not code reuse.

 Subtypes of interfaces need to implement
all of the methods of that interface or they
will be abstract.

The Project

 Now that you know a bit more about Java,
let’s look real quick at the project
framework and some more specifics about
what you are going to be doing during the
semester.

Inclusion Polymorphism

 The definition of subtyping states that
when we have a subtype object, we can
use it in a place where we expect a
supertype object.

 This implicitly gives us polymorphism
because we can write a function that
works with the supertype and all subtypes
should automatically work as well.

Why It Works
 The reason this happens is because the

subtypes “inherit” the full public interface
of the supertypes and possibly other
information/code as well. The code using
an object can only use the public
interface which all subtypes share with
the supertype.

 Inclusion polymorphism works well in
Java because all objects are stored as
references and all methods are virtual.

Constructors

 We have seen and written constructors,
but we should be more formal about them.

 A constructor is a method with no return
type that has the same name as the class.
As their name implies, they are used to
construct variables and some constructor is
called any time new is invoked.

 They can be overloaded with different
arguments.

The super Keyword

 Sometimes you want to be able to access
methods or constructors from the
superclass of a given class. In Java this is
done with the super keyword.
 For constructors the first line of a constructor

can be super(arg1,arg2,...); to call the
constructor of the superclass that takes the
given argument list.

 For other methods, using super.method(…)
will call that method of the superclass.

Inner Classes
 Starting with version 1.1, Java introduced

inner classes. The simplistic view of inner
classes is that they are classes inside of
other classes.

 The full reality is that inner classes in
Java have more complexity because they
have access the the outer class. Also,
unless you state otherwise, inner classes
keep track of the instance of the “outer
class” that creates them.

Static Inner Classes

 By default, you should make your inner
classes static because they will have a
lower overhead.

 The instances of this inner class are
associated with the class as a whole.

 They have access to all static methods and
members of the outer class, even if they
are private. If given an instance of the
outer class they can call private methods
on it.

Non-static Inner Classes

 If an inner class is not declared static, it
will get a reference to the instance of the
outer class in which it is created.

 This gives it access to all methods and
members of that instance. The methods
of the inner class can access the private
data of the outer class.

 This adds some overhead, but can be
very handy at times.

Anonymous Inner Classes

 Java has another type of inner class, the
anonymous inner class.

 As the name implies, these classes have
no names. Instead, they have to be a
subtype of some class or interface. They
can then be used as an instance of the
supertype.

 They allow you to create a class “inline”,
in the code for a method.

More on Anonymous ICs

 They are static or not depending on the
type of method they are created in.

 They have access to all the things the
named inner classes of their type would
have, plus the final variables in the
method in which they are declared.

 These are used extensively for event
handling in Java GUIs.

Let’s write some code

 Now let’s write some code that
demonstrates all the majors syntactic
points of Java that we have talked about
and displays inheritance.

Minute Essay

 Next class is on string processing. This
means that we are going to move away
from talking about the nature of the
language itself. What questions do you
still have about the Java language? Do
you feel comfortable trying to code
assignment #2 and if not what would
help?

 Quiz #1 is on Tuesday.

