
1

Stacks and Queues

2-14-2006

2

Opening Discussion

■ Do you have any questions about the quiz?
■ What did we talk about last class?
■ Do you have any questions about the reading?
■ Do you have any questions about the

assignment?

3

Thread Problems

■ The primary problem one runs into with
multithreaded programs is that threads share
memory and more than one thread can access a
piece of memory at once. This isn't a problem if
they are just reading, but if any thread is writing
you can have bad situations.

■ An extreme condition would be to consider two
threads operating on an array. Worst case is both
are sorting the array at the same time. You could
imagine one sorting while another tries to do a
binary search and the results are similarly bad.

■ The simplest (and most common) example is a
bank account where a race condition occurs.

4

Synchronization

■ The way to prevent two threads from accessing
the same piece of memory at the same time is to
synchronize the critical pieces of the code. You
can put the synchronized keyword in front of
methods or make synchronized blocks.

■ Each object and class in Java can have a monitor
that is locked when synchronized code is being
executed. Only one thread can hold the lock on
the monitor at a given time. This insures that you
never have two threads executing critical code on
a single object at the same time.

5

Wait and Notify

■ We can get even more control over how threads
behave with the wait and notify methods.

■ The wait method will stop the execution of a
thread until some other thread tells it to continue
execution. The notify and notifyAll methods are
how threads tell other threads that they are
supposed to wake up.

■ All of these must be called by a thread that holds
the monitor to the object they are being invoked
on. Typically that means that are called from
inside synchronized code.

6

ADTs

■ We now enter into the realm of the abstract data
type. The term ADT in many ways describes the
idea of an interface with documentation for what it
should do.

■ An ADT tells you that you have certain operations
and tells you what those operations do. It does
NOT tell you how those operations are done. This
separation of interface from implementation is one
of the hallmarks of good object-oriented code.

■ We will learn about multiple ADTs this semester
and you will learn about even more in Data
Abstraction. Today we start with the simplest of
them.

7

Stacks and Queues

■ What is a stack? What operations can you do on
a stack?

■ What is a queue? What operations can you do on
a queue?

■ What is the primary difference between a stack
and a queue?

■ How do you implement a stack with an array?
■ How do you implement a queue with an array?

8

Code

■ I want you to write interfaces for a Stack and a
Queue. Call them MyStack and MyQueue. Then
implement a stack using an array based
implementation.

■ After we have done that we'll write a queue. I'm
very displeased with the queue code in your book.
 I don't want you to mimic it. The reason is that
the operations should be O(1) and their dequeue
in O(n), much slower than it needs to be.

9

Minute Essay

■ Can you think of ways that you could parallelize a
sort algorithm? Would your method need any
synchronization?

■ Remember to read chapter #4 for next class.

