
1

Linked Lists

2-16-2006

2

Opening Discussion

■ What did we talk about last class?
■ Do you have any questions about the reading?
■ Do you have any questions about the

assignment?
■ Making a parallel sort.

3

Growing Stacks and Queues

■ Before we go into the main topic for today, let's
review our code for the array based stack and
queue. What we want to add today is the ability for
the arrays to grow if we put in too many elements.

4

The List ADT

■ Last time we talked about stack and queue as
ADTs. They tell you what happens when different
operations are invoked, but they don't tell you how
it happens.

■ The stack and queue are extremely simple. Today
we move up to the List ADT. This is much like you
writing a list on paper. You have the ability to add
and remove random elements based on their
location in the list or by specifying the item itself.

■ Let's look at the java.util.List interface for an
example. We won't try to write any lists that
complex.

■ Obviously you could implement the list ADT with
an array.

5

Linked Lists

■ Another way to implement the list ADT is with a
linked list.

■ What is a linked list? Why would you use one?
What are the strengths of a linked list? What are
the weaknesses of an array based list?

■ How do we add to a linked list?
■ How do we remove from a linked list?

6

Variations on a Theme

■ Your book only mentioned singly linked lists and
gives the impression all linked lists are singly
linked. This is not true.

■ Linked lists can be doubly linked so each node
points to the one before it and behind it. The
advantage here is that you can remove or insert a
node without keeping track of the one before it.

■ There are also many uses for circular linked lists.
These can be singly linked or doubly linked. In a
circular linked list, the tail points back around to
the head (and the other way around if it is doubly
linked).

7

Sentinels

■ Another feature your book doesn't mention is the
use of a sentinel. This is a node that is in the list
(typically a circular list), that doesn't hold data. It
simplifies the code by removing special checks for
null pointers.

■ Writing a doubly linked list without a sentinel is a
decent challenge because there are lots of if
statements that have to make sure a link isn't null.
With a sentinel the code is greatly simplified.

8

Code

■ Let's write a doubly linked list that uses sentinels.
We'll also have to decide on a List interface that
we want to use. We could try using the Java one
and realize we probably won't implement all the
methods yet.

9

Minute Essay

■ Why would you pick a linked list over an array
based list?

■ The design for assignment #3 is due on Tuesday.

