
1

Exceptions and Refactoring

3-21-2006

2

Opening Discussion

■ Do you have any questions about the quiz?
■ What did we talk about in the class before Spring

Break?
■ Do you have any questions about the

assignment?

3

Midterm Grades

■ The distribution was distinctly bimodal. The
median was an 81 so there won't be a curve.

■ Remember that this is only 15% of your grade, but
if you did poorly on it you will want to make sure
you improve in the second half of the semester.

40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

3.5

4

Exam Grade Distribution

Count

4

Errors in C

■ If a function in C didn't do the right thing for one
reason or another, how did it tell you that? What
did you need to do in your code to make sure you
caught those errors? Did you always do it?

5

Exceptions

■ There are a number of problems with using return
values to give you errors. The biggest is that not
all functions have invalid return values. The
second is that programmers are very prone to
ignore them which causes the error to propagate.
Using a flag has the same problem and is even
more often ignored.

■ For these reasons, Java includes exceptions.
When an error occurs, an exception is thrown.
Either something must catch the error and handle
it, or the code crashes at that point and prints a
stack trace. Errors are much less prone to
propagate.

6

Exception Syntax

■ There are several syntactic elements that deal
with exceptions. If you raise an exception use the
throw keyword. The single argument must be a
subtype of Throwable.

■ More often you will be calling code that can throw
an exception. In that case you need to put the call
in a try block and after the try block you put a
catch block with the type you want to catch. There
can be multiple catch blocks that catch different
types.

■ After the catch blocks you can put a finally block.
This will always happen, whether an exception is
thrown or not.

7

Two Types of Exceptions

■ You have written lots of code that can throw
exceptions without actually putting in try-catch
blocks. That is because the exceptions that your
code would throw are subtypes of
RuntimeException. These exceptions are
unchecked, which means you aren't forced to deal
with them.

■ Exceptions that are not RuntimeExceptions are
called checked exceptions and you must either
catch them or declare that your function throws
them. We will see a lot more of this when we get
into I/O.

8

Last Advantage

■ Good exceptions give you all the information you
need to debug your code. All exceptions have a
method called printStackTrace which can be
extremely helpful.

■ Well written exceptions go further and have a
string message that contains the information you
need. For example, overflows of arrays or lists
should tell you what index you asked for and how
big the array or list actually was.

9

Coding Exceptions

■ Together I want us to do some testing of
exceptions in our code for parsing formulas.

■ Now I want you to write some code that will do a
reverse polish calculator using Scanner and one
of your stacks. It should tell the user something
useful when they screw something up.

10

Refactoring

■ Many programmers, especially in smaller
development groups, have moved to so-called
agile development methods.

■ A major aspect of these methods is that when you
first write code you make something that works
and does just what you need at that time. Later on
you might have to come back and add
functionality. Adding this functionality typically
requires refactoring.

■ After code has been altered many times the
quality degrades. Refactoring is the process of
altering the structure of code without changing the
functionality.

11

Some Basic Refactoring

■ You have already seen the refactoring menu in
Eclipse because we have used it in class. We
have only used the most basic option of renaming
things or moving them around.

■ Other refactorings include extracting a section of
code into a separate method because you found
you do it more than once. You can also refactor
parts of a class out into their own class because
you find it could be helpful in other context.

■ All of these things can be done by hand, but tools
like Eclipse make sure that if your code worked
before you do it, it will work after you do it. Agile
method programmers rely on testing to enforce
this.

12

Drawing Program

■ Let's go to out drawing program and write some
extra code of it. Next class we will actually make it
so that we can draw with it. For that to be useful
we need to set up some more of the GUI and add
some classes to it first.

13

Minute Essay

■ Why are many exceptions in Java unchecked?
■ The design for assignment #5 is due Thursday.

