
1

Recursion

3-30-2006

2

Opening Discussion

■ What did we talk about last class?
■ Do you have any questions about the

assignment?

3

Recap of Coding

■ Let's go look at what we got through last time with
our drawing program. I have added a little bit
more into it that we can see as well.

4

What is Recursion?

■ A recursive function in mathematics is one that is
defined in terms of itself. In computer science it is
a function that calls itself.

■ Mathematically these functions have a general
relation for most input values as well as some
defined “termination” values.

■ The Fibonacci numbers are a nice example of a
recursive function, but we can also define factorial
recursively.

5

Recursion and the Stack

■ Java and most other modern programming
languages use a stack for function calls. The
stack is a section of memory that sits at one end
of the memory that program owns.

■ Each function gets a stack frame that holds local
variables and arguments to the function. Calling
functions push these frames and returns pop
them.

6

Recursion and Loops

■ The simplest recursive functions are basically
loops. They call themselves once and have an
argument that works as the iteration variable.

■ The call to itself has to be conditional. Otherwise
it is like an infinite loop, but you get a stack
overflow when it runs out of memory.

■ Note that a recursive function is a bit more
powerful than a standard loop because the stack
remembers earlier values. So a recursive “loop”
can not only visit all the values, it can revisit them
in reverse order.

■ Let's write some code to demonstrate how this all
works.

7

The Power of Recursion

■ Recursive functions are truly powerful when they
call themselves more than once. Converting
these types of function to loops requires significant
reworking of the logic (at best).

■ The stack is what enables this because with the
stack the flow of control can go off in one
direction, then return to the function and go off in
another direction.

■ These functions have “tree” call structures.
■ Any function that needs to do or test several

options to get a result can be written most easily
with recursion.

8

floodFill

■ You are probably all familiar with the option in
paint programs that allows you to “pour” in paint to
fill a region of a picture. How would you do this
with loops in a program?

■ With recursion we just write a function that calls
itself four times. Because of the memory of the
stack, it can go “around corners”.

9

Maze and Graph Traversals

■ By adding a bit of extra logic to a floodFill we can
turn it into a function that searches through
mazes. 2D mazes are a special example of the
general category of graphs. A graph has vertices
that are connected by edges.

■ The key to these problems is that we want to
leave behind “bread crumbs” to mark our path and
pick them up as we backtrack.

■ We can also can leave other markers that can
help speed up our algorithms depending on what
we are doing.

10

Drawing Program

■ Let's do a bit of work on our drawing program now.
 Between today and next class I want us to put in
a maze drawing object.

11

Minute Essay

■ Write a method that takes an int and an int[] and
returns the largest element in the array.

■ Remember that you have to turn in assignment #5
today. Unfortunately, I won't be available at all
this afternoon because of a department meeting
followed by the UPE induction followed by the
“Dress for Success” event. By the way, you
should consider going to that at 7pm tonight.

