
1

Multithreading/java.util.concurrent

4-11-2006

2

Opening Discussion

■ What did we talk about last class?
■ Do you have any questions about the

assignment?
■ What do you remember about threads? I argue

that multithreading is one of the most important
things you can learn during your time at Trinity.
Why?

3

Remember Threads?

■ Previously we talked about multithreading and
how we could do threads in Java. We did this
using that basic Thread class and capabilities that
were built into Java from the first version of the
language.

■ These capabilities give you everything you need to
do multithreading, but they don't make it as easy
as it could be in all cases.

■ With Java 5.0 a new package was added to the
libraries called java.util.concurrent. This package
makes many of the common tasks that were
challenging much easier.

4

Looking at the Library

■ You should each bring up a window and look at
the java.util.concurrent package. There are two
packages below this that also contain useful
classes.

■ There are a few primary interfaces/classes in this
package.
 Executor, ExecutorService,

ScheduledExecutorService, and Executors
 Locks and Conditions
 Synchronizer Utilities
 BlockingQueues

5

Executors

■ An Executor is something that can execute a
Runnable object. The idea is that different
implementations can choose to execute the
Runnable object in different ways and potentially
in different threads.

■ The ExecutorService interface extends Executor
and adds support for Callable objects which have
the ability to return information, unlike Runnable.

■ ScheduledExecutorService allows time
information for when something is executed.

■ The Executors class is a utility class that can be
used to create different helpful objects including
ExecutorServices.

6

Locks and Conditions

■ Sometimes use of standard synchronized blocks
isn't ideal because it is block scoped. Once the
code leaves a block the lock on the object is
relseased.

■ For this purpose the java.util.concurrent.locks
package has a Lock class that can be used to
synchronize a resources across multiple blocks.

■ There is also a Condition interface that can be
used to give you the behavior of wait and notifyAll
when you are using locks. The Lock object can
give you Conditions and you can have more than
one.

7

Synchronizer Utilities

■ There are four other classes in java.util.concurrent
that are used for synchronization purposes.
 Semaphore – has a count of “permits” that threads can

get. Blocks if you try to get one when all are used.
 CountDownLatch – starts closed and blocks all threads

that call await. It opens and starts those threads after
a specified number of calls to countDown.

 Exchanger – allows two threads to exchange a value
by calling the method by that name. The first thread
blocks until the second one is ready to exchange.

 CyclicBarrier – similar to CountDownLatch but blocks a
certain number of threads until that number have
called await. It can be used multiple times.

8

Blocking Queues

■ This is an interface for a Queue but the methods
put and take will block if they can't complete and
wait until they can.

■ So if you try to put into a blocking queue with a
fixed size and there are no more slots, it will block.
 If you try to take from one that is empty that will
also block.

■ There are 5 provided implementations of this
interface. Let's go look at each of those.

9

Atomic Variables

■ An atomic operation is one that can't be
subdivided. For threading this means that other
threads can interrupt it in the middle and see a
bad state.

■ The java.util.concurrent.atomic package contains
classes that give you the ability to do atomic
operations without having to do your own locking.

■ These operations include not only get and set
methods, but also methods that do basic
operations.

10

Code

■ Let's go back to our in class example and see
what we can do. Unfortunately, drawing is
something that doesn't parallelize very nicely.

11

Minute Essay

■ We are considering putting parallelism into the
project by having it so that different entities can
update at the same time. How will this change the
way you have to code?

■ Remember that assignment #6 is due today.

