
1

Files and Streams

4-18-2006

2

Opening Discussion

■ Do you have any questions about the quiz?
■ What did we talk about last class?
■ Do you have any questions about the

assignment?
■ What are files and why are they important? How

did you write to files in C? What capabilities of
files did you use?

3

Motivation

● One of the most important things we do on
computers is store and access large collections of
data. Typically this is done with files.

● File access comes in two flavors, random and
sequential. Files of the latter type are often called
streams. In a stream the basic operation is to get
or put the next byte of data, though more
elaborate wrappers can be put around that.

4

java.io Package

● The normal way of doing I/O in Java is with the
classes in the java.io package.

● This package has an elaborate class hierarchy
with different classes that play the different roles
for almost everything you want to do.

● There are also some special classes that perform
specific tasks like the RandomAccessFile class.

5

InputStreams and OutputStreams

● The most basic classes in java.io are the
InputStream and OutputStream classes. These
are the base classes for dealing with streams of
bytes.

● Let’s look in the documentation to see the
methods of these classes. The most significant
ones are the read and write methods though the
others can be important for different tasks.

6

Streams vs. Readers/Writers

● The stream classes handle reading and writing
bytes. For text data it can be easier to read and
write character data. This functionality is provided
by the Reader and Writer classes.

● If you are dealing with raw data you typically use
InputStream and OutputStream. If you are dealing
with text data you will likely us a Reader or Writer.

7

Plentiful Subclasses

● All of these classes have multiple subclasses to
give you more specific abilities. We can look at
these in the docs.
– File versions for I/O with files.
– Piped versions for connecting different streams.
– Buffered streams for better speed.
– Data and object streams we will discuss next class.

8

Basic Text Input?

● The original version of Java didn't have simple text
imput. This design decision was based on the
idea that programs rarely need to do general text
file reading. BufferedReader allows reading lines
of text that can be parsed.

● In Java 5.0 they added the java.util.Scanner class
for basic text input. It wraps around an input
stream. This was done as much for education
people as for industry.

9

Binary Files

● Most of the time, the way that we want to store
real data in files is in binary format. For everything
but strings, this takes a lot less space than storing
string equivalents and is faster to read and write.

● With a binary file, we can write ints, doubles, and
other primitives as well as strings. The files won’t
be human editable, but we can write code to read
them back in.

10

Making Streams from Streams

● One of the keys to being able to use the java.io
library is to notice that many stream types have
constructors that you pass other streams to.

● These create new streams that have different
functionality and use the stream that is passed to
them to send the data. In effect, you are wrapping
one stream inside another to get different
functionality for the same source/dest.

11

Data I/O Streams

● To do basic binary I/O in Java we use the
DataInputStream and DataOutputStream classes.
These can’t exist “on their own”. We use them to
wrap another stream that actually goes
somewhere.

● These classes provide us with the functionality to
read and write basic types.

● Let’s look at these classes real quick.

12

Object Streams

● We can write pretty much any class out to a
stream by writing one component at a time, but
doing so can be painful. Sometimes we want to
be able to write an object as a single entity.

● In Java we can do this with ObjectInputStream
and ObjectOutputStream.

● This is something that most languages don’t
support.

13

Serialization

● Writing objects to streams is also called serializing
them. The object streams can only work with two
types of data: primitives and Serializable. For an
object to be serialized it must be Serializable and
all its members must be either primitives or
Serializable.

● Members that are declared transient are not
serialized.

14

More on Serialization

● Serialization is an incredibly powerful tool. When
combined with reflection in Java it lets us do
things that aren’t possible in most languages.

● “With great power comes great responsibility.”
This is true in comics and in programming. You
have seen some of the difficulties of using
serialization and there are many more.

15

The File Class

● One other helper class in java.io is the File class.
This class represents a specific file and allows us
to get information about files. It is written in a way
to be largely platform independent.

● This class also gives us the basic functionality that
we would like to have when interacting with files.

16

JFileChooser

● For programs that use files, it is often nice to bring
up a GUI component to let the user pick a file.
This can be quite a pain. Java makes it easy by
providing a class that automatically views and
selects files.

● By simply creating and “showing” one of these, we
can very easily have the user specify a file for our
program to work with.

17

Code

● Let’s write a simple little text editor program that
uses a GUI and allows us to edit text files. We
can actually put this into our drawing program as a
text element.

● We will also use some File objects even though
we could avoid them.

● If we have time, let's also try to make it so that we
can save our drawings and load them back in by
making the drawing Serializable.

18

Minute Essay

■ Write code that will print your name to a file.
■ Remember that design #7 is due on Thursday.

