
1

Java Basics

1-19-2006

2

Opening Discussion

■ Do you have any questions about the reading?
■ Do you have any questions about the project?

3

Code

■ We want to continue our bank example that we
worked on last time in two ways.

■ First we want to add customer information.
Instead of adding that straight to the account, we
should create a Customer class and have the
account reference it.

4

No Preprocessor Directives

■ You import so you don’t have to type in full
package names. This looks similar to #include in
use, but it is quite different.

■ No #define in Java. For constants use static final
variables. For macros just use functions.

■ There is also no conditional compilation in Java so
#ifdef, #ifndef, etc. don’t exit. Assert was added in
1.4 but we won't be using it.

5

Meaning of static

■ A static member is associated with a class, not the
individual objects.

■ In our blueprint analogy, a static member is
something written on the blueprint or associated
with the factory, not something that is carried with
every object made from the blueprint.

■ A simple example that is often used when you are
trying to analyze the performance of programs is
to count how many objects of a given type are
created. You can do this with a static member
and code in the constructors.

6

Java References vs. Pointers

■ In Java when you declare an object you are really
declaring a reference to an object. This is like a
pointer but you can’t do pointer arithmetic. To get
a real object you use the new operator. New is like
malloc and returns a heap object.

■ All objects are gotten with new so all objects exist
on the heap.

■ null is a universal symbol for references that don’t
point to anything.

7

More Code

■ We need some constructors in these classes so
that we can create them in a valid state. And then
put a main in the code so we actually have a
runnable program that we can test.

8

Primitive Types in Java

■ Java is not purely object-oriented because it does
have primitive types. These types are boolean,
char, byte, short, int, long, float, and double.

■ Note that booleans and chars are NOT ints in
Java (though you can cast chars to ints). This is
significant because the statement if(v=3)does
not compile. This helps cut down on bugs but
might seem restrictive in some cases.

9

Primitives as Classes

■ When you need to represent a primitive type as a
class there are some classes in java.lang that can
help.

■ They are classes like Integer and Double that are
basically wrapper classes.

■ They do have some nice functionality in static
methods as well like Integer.parseInt(String s).

■ These classes are immutable.

10

Code

■ Let's write some code together now.

11

Minute Essay

■ Are there any things we have talked about that
aren't clear to you? Are you starting to see how
objects get used in object-oriented programming?

