
1

Searching and Sorting

2-7-2006

2

Opening Discussion

■ Do you have any questions about the reading?
■ Do you have any questions about the

assignment?

3

Searching

■ What are the two main methods of searching for
objects that you could employ? When can each
one be employed?

■ How did they make it so their code could search
through any type of array?

4

Comparators

■ There is an alternate way to make searching and
sorting code that will work with any type. The
method in the book only works with data that is
Comparable. Instead you can write the functions
to take an extra argument that is a Comparator.
Comparator<E> is an interface with one method:
compare(E e1,E e2). Notice it is a generic
interface.

■ Not only does using a Comparator allow you to
sort data that isn't Comparable, it also allows you
to easily change the sort order. The book creates
a type contact that sorts by last name. What if you
wanted to sort by first name or phone number?

5

Code a Search

■ I want you to write a linear search method that
uses a comparator. Put it in your ArrayUtil class
we created last time.

■ In practice you could use Arrays.binary search.

6

A Non-Recursive Binary Search

■ Your book uses a recursive version of binary
search. This is a perfectly valid approach and you
should all try to understand how it works. I want to
show you a version that works with a loop just to
show it can be done and some of the tricks I put
into such code to make sure it works well.

7

Sorts

■ What were the three “slow” sorts in your reading? I
call them slow sorts because they are all O(n2).

■ A formal definition of the O notation is as follows.
A function g(n) is O(f(n)) iff

■ I want you to write one of the sort algorithms using
a comparator. You can pick which one. Bubble
sort is the simplest one to write but it is also the
least efficient.

■ In practice you will likely use Arrays.sort.
■ Let's look at code for those three sorts and

instrument our comparator to see how many
swaps they do.

)()(*,:, mgmfcnmcn >>∀∃

8

Shell Sort

■ Arrays.sort uses either quicksort or merge sort,
depending on the data type. We will talk about
those later when we do recursion. There are faster
sorts you can write without using recursion.

■ One example of that is Shell sort. Shell sort is also
called the decreasing gap sort. It seems rather
magical because do insertion sort multiple times
with smaller gaps each time and you actually
come out with a sort that is faster than a single
insertion sort.

9

Minute Essay

■ Remember that your design for assignment #2 is
due today. It should include every class that you
are going to write for this assignment and every
public method. All of those need to be
documented properly with a description of what
they do.

