
1

Concluding Sorting and Threads

2-9-2006

2

Opening Discussion

■ Do you have any questions about the reading?
■ Do you have any questions about the

assignment?

3

Shell Sort

■ Arrays.sort uses either quicksort or merge sort,
depending on the data type. We will talk about
those later when we do recursion. There are faster
sorts you can write without using recursion.

■ One example of that is Shell sort. Shell sort is also
called the decreasing gap sort. It seems rather
magical because do insertion sort multiple times
with smaller gaps each time and you actually
come out with a sort that is faster than a single
insertion sort.

4

Measuring Performance

■ I have said that bubble sort is bad and that
insertion sort is a bit better while Shell sort is truly
better. How do you know though? How can we
demonstrate this?

■ Since the primary operation for the sorts is
comparisons, we can “instrument” our comparator
so that it counts how many times it is called. Using
that on a large data set will give use a solid
number for the number of comparisons a
particular sort has to do.

5

Threads

■ This is a topic that has been in PAD2 since we
switched to Java, but that I have moved up to
earlier in the semester over time.

■ The reason is simply that is is a topic that is
becoming more important in computing.

■ All the programming you have done so far has
been in a single thread of execution. That is to say
that the program goes from one line to the next
doing one at a time in order. In a program with
multiple threads the same thing happens, but in
multiple places at once.

6

Why Threads?

■ On a machine with a single processor and a single
core threads simply give the impression of two
things happening at once. With the widespread
arrival of dual core processors, most of the new
machines have the ability to actually do two things
at once, assuming programs have more than one
thread.

■ For at least a while, the future is about adding
more cores to processors so software is going to
have to change and that means programmers
have to change as well.

7

Threads in Java

■ What are some of the key concepts associated
with threads in Java? How long has Java been
able to handle multiple threads?

■ How do you create new threads?
■ What are some of the issues associated with

programs that have multiple threads? How do you
get around these issues?

8

Coding

■ Let's go ahead and write some code where we do
some large sorts in parallel. Since threads are
likely quite new to you we will do these as a class.
You should also bring up the API and look at the
Thread class.

■ We can see how much of a speed up we can get
on various machines in the department that have
different numbers of processors.

9

Problems

■ The primary problem one runs into with
multithreaded programs is that threads share
memory and more than one thread can access a
piece of memory at once. This isn't a problem if
they are just reading, but if any thread is writing
you can have bad situations.

■ An extreme condition would be to consider two
threads operating on an array. Worst case is both
are sorting the array at the same time. You could
imagine one sorting while another tries to do a
binary search and the results are similarly bad.

■ The simplest (and most common) example is a
bank account where a race condition occurs.

10

Synchronization

■ The way to prevent two threads from accessing
the same piece of memory at the same time is to
synchronize the critical pieces of the code. You
can put the synchronized keyword in front of
methods or make synchronized blocks.

■ Each object and class in Java can have a monitor
that is locked when synchronized code is being
executed. Only one thread can hold the lock on
the monitor at a given time. This insures that you
never have two threads executing critical code on
a single object at the same time.

11

Wait and Notify

■ We can get even more control over how threads
behave with the wait and notify methods.

■ The wait method will stop the execution of a
thread until some other thread tells it to continue
execution. The notify and notifyAll methods are
how threads tell other threads that they are
supposed to wake up.

■ All of these must be called by a thread that holds
the monitor to the object they are being invoked
on. Typically that means that are called from
inside synchronized code.

12

Minute Essay

■ Give an example of a place in a program where
you could potentially use multiple threads to speed
up execution.

■ Remember that the assignment is due today. I'll
be a bit late getting open lab because we have a
departmental meeting at 3:30.

