
1

Java2D Graphics

3/8/2007

2

Opening Discussion

■ Do you have any questions about the
assignment?

■ Do you have any questions about the reading?
■ How do you do custom drawings in Java?
■ What are some of the capabilities of Java2D?

How do you use those capabilities?

3

Midterm Results

4

Coding

■ I want you to spend a few minutes writing a little
program with a main in it that draws a little custom
picture. The picture should include both shapes
and text.

■ Now make it so that the picture rotates. You can
make the rotation happen either because of user
input or based on a timer.

5

Exceptions
■ In C if a function ran into a problem it either had to

return an invalid value, or it had to set a flag. Both
of these options leave the burden on the
programmer to check things and often lead to
propagation of errors, making them harder to track
down.

■ In Java, problems in code should be reported with
exceptions. We have already seen the use of
try/catch blocks when we call code that might
throw an exception.
try {
} catch(Exception1 e) {
} catch(Exception2 e) {
} finally { // This isn't required
}

6

Types of Exceptions

■ There are basically two types of exceptions in
Java, checked an unchecked. (There are also
errors, but when those happen it typically means
you are sunk and can't do anything about it.)

■ With a checked exception you are forced to either
have it in a try/catch or your function method must
say it throws that exception by using the throws
syntax.

■ Unchecked exceptions are any exceptions that
inherit from RuntimeException, and they do not
have to be dealt with. Without these your code
would become unwieldy because almost every
line can throw a NullPointerException.

7

Throwing Your Own

■ If you write a function that might not work, but
can't handle the problem itself, then your function
should throw an exception.

■ We throw an exception with the throw operator. It
is followed by an object of type Throwable
(normally an exception of some type).

■ The method should have a throws clause listing
the different exceptions it can throw. This is
required for checked exceptions.

8

Self-documenting Exceptions

■ Good exceptions tell you why they happened and
give you sufficient information to help you debug.

■ For example, something like an
IndexOutOfBoundsException should tell you what
index was asked for and the range that was valid
so that you don't have to rerun the program and
print that information before the point where it
crashes.

9

Refactoring

■ The process of refactoring is fairly new in the
software world, at least it has only been recently
formalized. You refactor your code when you
change the structure without changing the
function. A proper refactoring will not change what
a program does in any way at all.

■ You normally refactor code when you see
something that can be improved. A simple
example is changing the name of a method or
variable so it better fits the usage.

■ More complex refactorings include break up
methods, pulling code out into methods, pulling
code out into classes, etc.

10

Minute Essay

■ What are you going to be doing for Spring Break?
■ I'm going to be adding two more sections to “From

C to Java”. I'll send out an e-mail when they are
ready for you to read.

■ Try not to forget too much over the break.
Remember that this is a creative venture and you
need to exercise your abilities to grow them and
also so they don't atrophy.

