
1

Multithreading in Java

4/3/2007

2

Opening Discussion

■ Do you have any questions about the quiz?
■ What could go wrong with our tree to mess up

performance? It could become unbalanced and it
degrades to a linked list.

■ Do you have any questions about the
assignment?

3

Coding with java.util.concurrent

■ Now that you know more about multithreading and
the java.util.concurrent library, I want for us to
write some more serious parallel code.

■ In fact, I want for us to combine what we have
learned about recursion and parallelism to create
some code that uses a divide and conquer method
to solve a problem, but throws in multithreading to
complete it faster.

■ How can we go about doing this? How is divide
and conquer well suited for parallelization?

4

Multithreading

■ Let's play briefly with our drawing application and
see what happens when we try to multithread part
of it. Note that multithreading in GUIs can provide
some benefits other than real speed by making
the interaction smoother.

5

I/O Streams

■ Next class you will work with input and output
streams that are part of the java.io package. This
is the basic package for doing input and output in
Java.

■ The package uses significant inheritance with the
hierarchies rooted in the InputStream,
OutputStream, Reader, and Writer abstract
classes. The first two provide I/O based on bytes
while the other two use characters.

■ These base classes have very little functionality
themselves and being abstract they can't even be
instantiated.

6

File Streams

■ In order to use streaming you have to be able to
instantiate something. One set of classes that you
can instantiate is the set of file streams.

■ These classes are FileInputStream,
FileOutputStream, FileReader, and FileWriter.

■ Let's go look at these really quick.

7

Wrapping Streams

■ The file stream classes still don't do much, they
just do what their base class does except they are
actually attached to a file.

■ Being able to just read or write bytes is technically
sufficient for any task, but you wouldn't want to
write much code that way.

■ We gain functionality by “wrapping” stream objects
around one another. This is a design pattern
called the Decorator.

■ Example decorations include buffering,
functionality for binary I/O
(DataInputStream/DataOutputStream), or
formatted printing (PrintWriter).

8

Minute Essay

■ What are some of the potential benefits of the
streaming model Java uses for doing I/O? How
could inheritance and polymorphism be put to use
here?

■ There are only six remaining class days.
■ This weekend we are hosting a high school

programming competition. The competition runs
from 10am to 4pm and we will need runners and
people to help monitor the rooms where teams are
competing.

