
1

Java Basics

1/23/2007

2

Opening Discussion

■ What did we talk about last class?
■ Do you have any questions about the reading?
■ Do you have any questions about the

assignment? Let's go over the requirements for
this first design/assignment and what I'm
expecting from you.

3

Documentation Comments

■ In Java, comments that start with /** are
documentation comments. These comments are
used by javadoc to produce HTML documentation.

■ These comments should go above all classes and
methods, especially public ones. Inside the
comment you start with a summary sentence then
have a paragraph describing the class or method.
After that can come certain “tags” that begin with
@.

4

Code

■ We want to continue our bank example that we
worked on last time in two ways.

■ First we want to add customer information.
Instead of adding that straight to the account, we
should create a Customer class and have the
account reference it.

■ Put in proper documentation comments on the
code you write today.

5

Java References vs. Pointers

■ In Java when you declare an object you are really
declaring a reference to an object. This is like a
pointer but you can’t do pointer arithmetic. To get
a real object you use the new operator. New is like
malloc and returns a heap object.

■ All objects are gotten with new so all objects exist
on the heap.

■ When you call new it invokes a constructor.
■ null is a universal symbol for references that don’t

point to anything.

6

Immutable Objects

■ In your reading you have inevitably come across
the term immutable. What does this mean?

■ What are the advantages and pitfalls of
immutability?

■ How can you write code that takes advantage of
immutability?

■ The entire paradigm of functional languages is
based on the idea that data is immutable.

7

Types and Polymorphism

■ What are types in programming languages? What
are some examples of types you are used to?

■ Polymorphism literally means many shapes. In a
programming context it means many types.
Polymorphic code is code that can work with more
than one input type.

■ Universal polymorphism allows an infinite number
of types. Ad hoc allows a finite number.
Obviously the former is much more powerful and
that is the type of polymorphism we will normally
care about.

■ Could you write polymorphic code in C?

8

Inheritance

■ The primary way we get polymorphism in Java is
through inheritance.

■ We can specify that one class inherits from
another class with the extends keyword in Java.

■ Many class based object oriented languages
include inheritance. It is a construct in languages
that models the “is-a” relationship. You should
only use inheritance when this relationship
applies. Even when it does apply it isn't always the
the right thing to do.

9

Two Sides of Inheritance

■ Inheritance provides two functions.
■ The original motivation for inheritance, and the

root of the term, is that a subclass implicitly gets a
copy of everything in the class that it is inheriting
from. This means it has all data and functions. It
can't directly access the things that are private.

■ Inheritance also provides subtyping. If class B
inherits from A, then any code that uses A will
work with an object of type B. This is how we get
our polymorphism in Java. We write code that
works with supertypes and it automatically works
with subtypes. This type of polymorphism is called
inclusion polymorphism.

10

Restrictions in Java

■ Java places some restrictions on inheritance to
simplify the language. The main restriction is that
you can only extend one class. Doing otherwise,
multiple inheritance, tends to make things very
complex.

■ There are times when you want to have a class be
a subtype of two different types though. To allow
this Java has a construct called an interface.
Interfaces have no data (they can have static
data) and all methods in them are abstract. They
only define what you can do with them, not how to
do it. You can implement as many interfaces as
you want.

11

Code

■ Now I want you to watch me construct some code
that uses inheritance and polymorphism.

■ The reading runs you through the classic example
of a shape so I'm going to do something a bit
different. I want to use the example of a simple
function of one variable as our supertype and then
create subtypes for specific types of functions.

12

Minute Essay

■ How do you feel the format of a mini-lecture,
followed by readings, followed by applying the
knowledge is working? What could be done to
improve it? Are you able to get through the
readings with a reasonable comprehension of the
material?

■ Remember to submit the design for the first
assignment, which includes your description of
your game, by midnight tonight and send me an e-
mail that includes your username when it is done.
Point your browser to the design to check that
everything worked correctly.

