
1

Threads

2/8/2007

2

Opening Discussion

■ When would you write your own sort? If you know
something about the data or it is a very small set
of data. Mergesort has a lot of overhead that
hurts you when N is small.

■ Do you have any questions about the reading?
■ Do you have any questions about the

assignment?
■ What are threads? Why do you care about them?
■ How do you make multiple threads in Java?
■ What are some difficulties you run into with

threads?
■ What can you do in Java to get around these

difficulties?

3

Thread Coding

■ The sorting code we wrote last time can provide a
great test for threading. In this case we want to
use our slow sorts so that we can actually time
how long it takes them to run.

■ I want you to add to your main some code that will
create N (where N is an int variable) arrays of
Doubles of length ARRAY_SIZE (you can declare
that as a static final variable) then fill them with
random values.

■ First sort them one at a time, then refill them and
sort them in N threads. Use System.nanoTime to
time how long each of those takes.

4

Abstract Data Types (ADTs)

■ Next class we will be working with the simplest
forms of abstract data types. These are things
that hold data and specify how you can interact
with it and what happens when data is added or
removed.

■ In Java an ADT is basically an interface for a
container with comments giving details on what
happens with each method.

■ Note that it doesn't specify how things happen.
That is why it would be an interface. ADTs can be
implemented in many different ways.

5

Stacks and Queues

■ The simplest forms of ADTs, they each require
one method to add an element and one method to
remove an element. For easy of use we typically
also include two other methods.

■ Methods of a stack
 push
 pop
 peek
 isEmpty

■ Methods of a queue
 enqueue
 dequeue
 peek
 isEmpty

6

The Difference?

■ Push and enqueue add items while pop and
dequeue remove items. The difference is what
item gets removed.

■ A stack is last in, first out (LIFO). Just think of how
you interact with a stack.

■ A queue is first in, first out (FIFO). If you were
British you would use the term queue instead of
line for what you stand in when waiting for
something.

■ Next class we will implement both of these using
arrays.

7

Minute Essay

■ Can you think of any programs that you would
want to multithread? How might you break the
work up in that program?

■ Have you done any Java coding outside of class
that isn't part of the assignment?

■ Remember to turn in assignment #2 today.
■ Quiz #2 will be at the beginning of next class.

