
1

Linked Lists

2/21/2008

2

Opening Discussion

■ Do you have any questions about the quiz?
■ Let's look at some solutions to the interclass

problem.
■ Do you have any questions about the assignment

or the readings?
■ Let's finish our array based queue quickly.
■ What is a list? What are the things that you can

do with a list?

3

The List ADT

■ The next step up the ADT ladder is the list.
Basically a list provides general access so you
can add, remove, or search for things at random
locations in the list.

■ Java has an interface called List in java.util. Let's
go look at that.

4

An Array Based List

■ So how could we implement the list interface using
an array?

■ What methods of that implementation would be
“fast”? Which ones would be “slow”?

■ What do the terms fast and slow mean here in O
terms and what operations are being considered
for that?

5

Linked Lists

■ There is an alternate method of implementing the
list interface called the linked list. It is strong
where an array list is weak, but weak where an
array list is strong.

■ A linked list is made of nodes and each node
knows about one or two of its neighbors (has
pointers to them).

■ We move around linked lists by “walking” from
node to node.

■ Adding and removing can be very fast and always
require very few memory writes.

6

Types of Linked Lists

■ Linked lists can be implemented in many ways.
The basic characteristic is that we only keep a
reference to one node and nodes then link to one
another.

■ The linking can be single or double. A doubly
linked list has nodes that know about both the next
and the previous elements.

■ Linked lists can also be circular. In a circular
linked list, the first element links around to the
back one.

■ For optimization purposes, lists can keep track of
a head and a tail, but that isn't required.

7

Implementing a Singly Linked List

■ Let's work together to build an implementation of a
singly linked list.

■ We will implement the java.util.List interface, but
we won't have time to implement all of the
methods.

8

Sentinels

■ Your book refers to an extra node placed at the
beginning of a linked list as a dummy node. These
are also called sentinels and your book
understates how much they can improve your life.
They also don't do them quite right.

■ A sentinel is an extra node in the list the
represents the “end” of the list and doesn't store
data. The purpose of the sentinel is to remove
special cases. The next of the sentinel is what we
have called head.

9

Implementing a Doubly Linked List

■ Now let's implement java.util.List with a doubly
linked list with a sentinel. The list will also be
circular.

■ You should notice that this implementation never
has to check for null because no references in the
list should ever be null. This simplifies the code
significantly. We also implicitly get a head and a
tail with no extra work. If you don't have a sentinel
you will write a lot of extra checks for nulls and
even more to include a tail.

10

Iterators

■ We've already discussed that direct access on
linked lists is very inefficient. How then should we
walk through a list with outside code? Remember
that the outside code doesn't have access to the
nodes so it can't use the style of loop we have
been doing internally.

■ The concept of an Iterator is something that
abstracts the process of walking through all of the
elements in a container. Iterators can not only be
efficient, they also make code more flexible
because they don't depend on the implementation
details of the containers.

11

Iterating Lists

■ An iterator basically needs to encapsulate the
information and functionality we would put into a
standard method of going through a container.

■ With this in mind, what do we need to put in an
iterator for an array based list?

■ What would we put in an iterator for a linked list?

12

Minute Essay

■ For one of your future assignments you will be
forced to write your own linked list. What type of
linked list do you think you will write?

■ Remember that the design for assignment #3 is
due on Tuesday.

■ Interclass problem – Write a simple linked list that
you can use for the memory function of our
graphical RPC. Have a main that puts some
numbers on your list then pulls them off.

