
1

Objects and Classes

1/22/2008

2

Opening Discussion

■ Do you have any questions about the reading?
■ Have you thought of any ideas for your games?

3

Old Games

■ Let's look at some of the games that students
have written in the past to give you some ideas of
what you can create.

4

Objects and Classes

■ From your reading and the last class you should
have a general idea of what object orientation is.

■ What is encapsulation?
■ What is the distinction between an object and a

class?
■ What are the different visibility levels you can use

in Java?
■ How does visibility of members impact

encapsulation?

5

Writing Java

■ In Java all code goes inside of classes. Methods
in a class have innate access to the data in that
class.

■ Java is not 100% object-oriented. Primitive types
in Java (int, double, etc.) are not objects, they
have no members. This decision was made for
efficiency.

■ Public members of a class define a “public
interface”. These are the things that are known
and accessible outside the class. They are hard to
change without breaking other code. Data should
never be public.

6

ACMEBank

■ Now let's do an example. This is a rather
standard example of a bank account. We will
enhance it a bit to help demonstrate some
features of Java.

■ This example lets us see a scope for variables
that didn't exist in C. The member data exist in
each object and all methods invoked on that
object can access it. We see that with the balance
on the account.

7

Primitive Types in Java

■ Java is not purely object-oriented because it does
have primitive types. These types are boolean,
char, byte, short, int, long, float, and double.

■ Note that booleans and chars are NOT ints in
Java (though you can cast chars to ints). This is
significant because the statement if(v=3)does
not compile. This helps cut down on bugs but
might seem restrictive in some cases.

8

Primitives as Classes

■ When you need to represent a primitive type as a
class there are some classes in java.lang that can
help.

■ They are classes like Integer and Double that are
basically wrapper classes.

■ They do have some nice functionality in static
methods as well like Integer.parseInt(String s).

■ These classes are immutable.
■ Autoboxing, adding in Java 5, will automate the

use of wrappers, but you still need to understand
what is happening.

9

Java References vs. Pointers

■ In Java, when you declare an object variable you
are really declaring a reference to an object. This
is like a pointer but you can’t do pointer arithmetic.
To get a real object you use the new operator.
New is like malloc and returns a heap object.

■ All objects are gotten with new at some level
(even if you don't call new yourself) so all objects
exist on the heap.

■ null is a universal symbol for references that don’t
point to anything.

10

this and Using Members

■ When you are writing a method of a class, it has
direct access to the member data and methods of
that class. You don’t have to use the ‘.’ notation.

■ To be explicit, you can use the ‘this’ keyword
which implies the object that the method was
invoked on.

11

static

■ The term static in the C-family languages implies
something like “there is only one”. This is true in
Java as well.

■ A static member or method is associated with the
class itself, not with an object/instance of that
class.

■ They can be reached or invoked without having an
object of that class too.

■ In our blueprint analogy, a static member is
something written on the blueprint or associated
with the factory, not something that is carried with
every object made from the blueprint.

12

Documentation Comments

■ In Java, comments that start with /** are
documentation comments. These comments are
used by javadoc to produce HTML documentation.

■ These comments should go above all classes and
methods, especially public ones. Inside the
comment you start with a summary sentence then
have a paragraph describing the class or method.
After that can come certain “tags” that begin with
@.

13

No Preprocessor Directives

■ You import so you don’t have to type in full
package names. This looks similar to #include in
use, but it is quite different.

■ No #define in Java. For constants use static final
variables. For macros just use functions.

■ There is also no conditional compilation in Java so
#ifdef, #ifndef, etc. don’t exit. Assert was added in
1.4 but we won't be using it.

14

Minute Essay

■ What are you thinking of doing for your game?
■ Name one way that you can think of that object-

orientation can help you with programming.
■ Keep reading through “From C to Java”.
■ Interclass Problem – Write a Java program that

uses a loop and an if statement. The whole thing
can be put inside a single main method for this.

