
1

Java Basics

1/24/2008

2

Opening Discussion

■ Let's look at solutions to the interclass problem.
■ What did we talk about last class?
■ Do you have any questions about the reading?

3

Code

■ We want to continue our bank example that we
worked on last time in two ways.

■ First I want to have our bank make an account
and try doing some things with it.

■ Second we want to add customer information.
Instead of adding that straight to the account, we
should create a Customer class and have the
account reference it.

■ Let's put in proper documentation comments on
the code as well.

4

Java References vs. Pointers

■ In Java when you declare an object you are really
declaring a reference to an object. This is like a
pointer but you can’t do pointer arithmetic. To get
a real object you use the new operator. New is like
malloc and returns a heap object.

■ All objects are gotten with new so all objects exist
on the heap.

■ When you call new it invokes a constructor.
■ null is a universal symbol for references that don’t

point to anything.

5

More on Objects

■ There is no operator overloading in Java. You write and
call normal methods instead.

■ Doing = or == with object references assigns or compares
references. Think of them as pointers without the *.

■ Use a copy constructor to copy and equals() for value
comparison.

■ No -> or * (deref) operator because things are implicitly
dereferenced.

6

Garbage Collection

■ Java has automatic garbage collection. There is
no delete operator (no free).

■ When you are done using an object and you have
no more reachable references to it, the system
can determine this and free up the memory for it.

■ As a result, you can allocate objects much more
freely because you don’t have to worry about
freeing them.

7

Arrays

■ Arrays in Java are actually objects. An array type is
denoted by placing [] after the normal type. When you do
a new you are allocating the array object. If the items in it
are objects you still have to allocate the individual
objects.

■ This is really nice for inclusion polymorphism.
■ You use them like you would in C/C++, though they do

have a length member that you can access to find out
how many elements are in an array.

8

Strings

■ Like arrays, strings are a class in Java, called
String. Literal strings in Java are objects of that
class too.

■ This class is in the java.lang package. Note that
java.lang is the one package that is implicitly
imported so you don’t have to use the import
statement to refer to the classes in it directly.

9

Exceptions

■ Java tries to prevent sloppy error handling by providing
exceptions instead of requiring programmers to check
return codes.

■ try blocks surround code that might throw exceptions.
■ catch blocks follow a try block and specify what type it is

waiting for.
■ finally catches everything and always happens.
■ If an exception type can be thrown but isn’t caught, it

must be in the throws clause of that method. Not true for
RuntimeExceptions.

10

Immutable Objects

■ In your reading you have inevitably come across
the term immutable. What does this mean?

■ What are the advantages and pitfalls of
immutability?

■ How can you write code that takes advantage of
immutability?

■ The entire paradigm of functional languages is
based on the idea that data is immutable.

11

Minute Essay

■ Do you have any significant questions about Java
at this point? What do you see as the most
significant differences between Java and C right
now?

■ Interclass Problem – Write a class that represents
rational numbers and do some code to test it out.

