
1

Threads

2/14/2008

2

Opening Discussion

■ Let's look at solutions to the interclass problem.
■ Do you have any questions about the reading?
■ Do you have any questions about the

assignment?
■ What is the most significant change in computer

hardware in the last three years? What impact
does this change have on developers?

3

Threads

■ All the programming you have done so far has
been in a single thread of execution. That is to say
that the program goes from one line to the next
doing one at a time in order. In a program with
multiple threads the same thing happens, but in
multiple places at once.

4

Why Threads?

■ On a machine with a single processor and a single
core threads simply give the impression of two
things happening at once. With the widespread
arrival of multicore processors, most of the new
machines have the ability to actually do two or
more things at once, assuming programs have
more than one thread.

■ For at least a while, the future is about adding
more cores to processors so software is going to
have to change and that means programmers
have to change as well.

5

The Thread Class

■ Most modern languages have the ability to do
multithreading. It is easier in some than in others.

■ Java provides a simple way of doing this with the
java.lang.Thread class.

■ This class can also be useful even if you aren’t
using multiple threads because it has static
methods that will impact the behavior of the
current thread.

■ The Thread class has been in Java since the
language was created. Java 5 added a newer
library to help with this task. We will cover it later
in the semester.

6

Spawning Threads

■ To start a new thread, you simply need to create a
Thread object and pass it an instance of a
java.lang.Runnable object.

■ Runnable is an interface with one method in it,
run. When the thread object’s start method is
called, the other thread becomes active, and it will
begin execution at the run method of the Runnable
object. Control returns to the original thread and
they execute in parallel.

7

Thread Problems

■ The primary problem one runs into with
multithreaded programs is that threads share
memory and more than one thread can access a
piece of memory at once. This isn't a problem if
they are just reading, but if any thread is writing
you can have bad situations.

■ An extreme condition would be to consider two
threads operating on an array. Worst case is both
are sorting the array at the same time. You could
imagine one sorting while another tries to do a
binary search and the results are similarly bad.

■ The simplest (and most common) example is a
bank account where a race condition occurs.

8

Synchronization

■ The way to prevent two threads from accessing
the same piece of memory at the same time is to
synchronize the critical pieces of the code. You
can put the synchronized keyword in front of
methods or make synchronized blocks.

■ Each object and class in Java can have a monitor
that is locked when synchronized code is being
executed. Only one thread can hold the lock on
the monitor at a given time. This insures that you
never have two threads executing critical code on
a single object at the same time.

■ Too much synchronization slows things down or
causes deadlock.

9

Wait and Notify

■ We can get even more control over how threads
behave with the wait and notify methods.

■ The wait method will stop the execution of a
thread until some other thread tells it to continue
execution. The notify and notifyAll methods are
how threads tell other threads that they are
supposed to wake up.

■ All of these must be called by a thread that holds
the monitor to the object they are being invoked
on. Typically that means that are called from
inside synchronized code.

■ Wait should be called inside a while loop. Use
notifyAll.

10

Thread Coding

■ The sorting code we wrote last time can provide a
great test for threading. In this case we want to
use our slow sorts so that we can actually time
how long it takes them to run.

■ I want you to add to your main some code that will
create N (where N is an int variable) arrays of
Doubles of length ARRAY_SIZE (you can declare
that as a static final variable) then fill them with
random values.

■ First sort them one at a time, then refill them and
sort them in N threads. Use System.nanoTime to
time how long each of those takes.

11

Minute Essay

■ Why is learning how to do multithreaded
programming so essential today?

■ The design for assignment #2 is due today.
■ Interclass Problem – Write code that prints the

numbers 1-100. Then call that code in two threads
that are executing in parallel and see what
happens. Try printing with both System.out and
System.err.

