
1

Linked Lists and Iterators

3/17/2009



2

Opening Discussion

■ Midterm results.
■ Let's look at some solutions to the interclass 

problem.
■ Do you have any questions about the reading?
■ Do you have any questions about the 

assignment?



3

Implementing a Doubly Linked List

■ Now let's implement java.util.List with a doubly 
linked list with a sentinel. The list will also be 
circular.

■ You should notice that this implementation never 
has to check for null because no references in the 
list should ever be null. This simplifies the code 
significantly. We also implicitly get a head and a 
tail with no extra work. If you don't have a sentinel 
you will write a lot of extra checks for nulls and 
even more to include a tail.



4

Iterators

■ Direct access on linked lists is very inefficient. 
How then should we walk through a list with 
outside code? Remember that the outside code 
doesn't have access to the nodes so it can't use 
the style of loop we have been doing internally.

■ The concept of an Iterator is something that 
abstracts the process of walking through all of the 
elements in a container. Iterators can not only be 
efficient, they also make code more flexible 
because they don't depend on the implementation 
details of the containers.



5

Iterating Lists

■ An iterator basically needs to encapsulate the 
information and functionality we would put into a 
standard method of going through a container.

■ With this in mind, what do we need to put in an 
iterator for an array based list?

■ What would we put in an iterator for a linked list?



6

Minute Essay

■ How do you think you would do a linked list in C? 
How is it different from the Java code?

■ Interclass problem – Write an iterator that goes 
through our linked list backwards. Try another one 
that skips every other element.


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6

