
1

Trees

4/7/2008

2

Opening Discussion

■ Let's look at solutions to the interclass problem.
■ Do you have any questions about the

assignment?
■ Do you have any questions about the reading?
■ Comments on recursion

 Do I use recursion in my research? Yes, for trees.
 How is recursion used in advanced programming?
 Is recursion used differently in different languages?
 Tracing the midterm EC.

■ Goals of this class. Why is it hard? Why do we
move so fast?

3

Recursive Sorts

■ Let's finish writing that quicksort routine that we
started last class.

4

What is a Tree?

● You are all familiar with what normal trees look
like. In CS we use the term somewhat differently,
and more formally.

● To describe trees we need some basic
terminology
– Node - an element of a tree. One node is designated

as the “root”
– Edge - a directed connection from one node to

another.

5

Tree Criteria

● Every node, C, has exactly one incoming edge
from another node, P. P is said to be the parent
of child node C. Root has 0.

● There is a unique path from the root to any node.
The number of edges on that path is called the
path length. It is also called the depth of the node.

● A node with no children is called a leaf. The path
length from a node to the deepest leaf in the
height of that node.

6

More Terms

● Following the parent-child analogy, children of the same
node are called siblings. We also call any node on a path
below a given node a descendant and any above an
ancestor.

● You might also hear the size of a node referred to as the
number of descendants of a node, including itself.

● We can also define a tree as either empty, or a root with
zero or more subtrees where the root connects to the
roots of those subtrees.

7

General Tree Implementation

● In a general tree, each node can have zero or
more children. That is a lot of flexibility. We want
a class to represent nodes. To get this flexibility
we can use a linked list. Each node has pointers
to a first child and the next sibling.

● It might be just as easy to have the child member
be an ArrayList that we put Nodes in. File
systems are a good example of this.

8

Traversals

● As with any data structure one of the things you
want to be able to do is to traverse through all the
elements.

● Think for a while about how you would do this?
There is even a question about the order you
traverse them in. Do you want to process a node
before you process its children or after? If before
we call it a preorder traversal. If after it is a
postorder traversal.

9

Traversals and Recursion

● The simplest way to do a traversal is through recursion.
If you want to do it with a loop you have to implement a
data structure to store some nodes or have the tree
specially set up.

● The traverse function takes a node and calls itself once
with each child node. It also does whatever the visit
operation is.

● Preorder does a visit before going to children and
postorder visits after going to children.

● Breadth first uses a queue, not recursion.

10

Coding

■ For our first example of a tree, I want to make
some changes to our formula parser.

■ If we introduce variables we might evaluate the
same formula many times with different values. It
is inefficient to do the same string processing over
and over.

■ It is more efficient to parse the string once and
build a tree that represents the formula then do
the evaluation on that tree.

■ Let's code this.

11

Minute Essay

■ Do you have any questions about the things that
we did today?

■ Assignment #5 is due today.
■ Thursday is your one “free” day.
■ The mock programming competition in

Wednesday 3-6pm in this room.
■ Interclass Problem – Take the formula parser with

variable support and edit a drawable so that it can
use formulas

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

