
1

Stacks and Queues

2-25-2009

2

Opening Discussion

■ Let's look at solutions to the interclass problem.
■ Do you have any questions about the reading?
■ Do you have any questions about the

assignment?
■ Minute Essays

 How do you change the size of a button?
 Why is it bad to call stop() on a thread?
 How and why do you overclock a processor?

3

Synchronization

■ The way to prevent two threads from accessing
the same piece of memory at the same time is to
synchronize the critical pieces of the code. You
can put the synchronized keyword in front of
methods or make synchronized blocks.

■ Each object and class in Java can have a monitor
that is locked when synchronized code is being
executed. Only one thread can hold the lock on
the monitor at a given time. This insures that you
never have two threads executing critical code on
a single object at the same time.

■ Too much synchronization slows things down or
causes deadlock.

4

Wait and Notify

■ We can get even more control over how threads
behave with the wait and notify methods.

■ The wait method will stop the execution of a
thread until some other thread tells it to continue
execution. The notify and notifyAll methods are
how threads tell other threads that they are
supposed to wake up.

■ All of these must be called by a thread that holds
the monitor to the object they are being invoked
on. Typically that means that are called from
inside synchronized code.

■ Wait should be called inside a while loop. Use
notifyAll.

5

Thread Coding

■ Sorting code can provide a great test for
threading. In this case we want to use our slow
sorts so that we can actually time how long it
takes them to run.

■ Let us create a command with some code that will
create N (where N is an int variable) arrays of
Doubles of length ARRAY_SIZE (you can declare
that as a static final variable) then fill them with
random values.

■ We can sort them one at a time, then refill them
and sort them in N threads. Use
System.nanoTime to time how long each of those
takes.

6

Abstract Data Types (ADTs)

■ Today we will be working with the simplest forms
of abstract data types. These are things that hold
data and specify how you can interact with it and
what happens when data is added or removed.

■ In Java an ADT is basically an interface for a
container with comments giving details on what
happens with each method.

■ Note that it doesn't specify how things happen.
That is why it would be an interface. ADTs can be
implemented in many different ways.

7

Stacks and Queues

■ The simplest forms of ADTs, they each require
one method to add an element and one method to
remove an element. For easy of use we typically
also include two other methods.

■ Methods of a stack
 push
 pop
 peek
 isEmpty

■ Methods of a queue
 enqueue
 dequeue
 peek
 isEmpty

8

The Difference?

■ Push and enqueue add items while pop and
dequeue remove items. The difference is what
item gets removed.

■ A stack is last in, first out (LIFO). Just think of how
you interact with a stack.

■ A queue is first in, first out (FIFO). If you were
British you would use the term queue instead of
line for what you stand in when waiting for
something.

9

Array Based Stack

■ Let's write an interface called MyStack with the
methods we said should be in it. Make the
interface generic so it can handle any type.

■ Now let's write a class called ArrayStack and
make it implement MyStack. Fill in the code for
ArrayStack and add a main method to test that
they work.

10

Array Based Queue

■ Now we will do the same thing for a queue. Make
a MyQueue interface and an ArrayQueue class.

11

Other Code

■ One of the most standard applications of a stack
is a reverse polish calculator (RPC).

■ Let's make a class for a RPC then make a
command that will use it.

12

Minute Essay

■ We will re-implement the MyStack interface latter
on using a linked list for the implementation. Can
you describe how we might do that?

■ Remember that design #3 is due today.
■ Interclass problem – Edit the calculator GUI that

you have made so that it implements an RPC
calculator. You might want to use a JTextArea or
a JList to display the stack.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

