
1

Iterators and Java2D Graphics

3-11-2010



2

Opening Discussion

■ Let's look at solutions to the interclass problem.
■ Making a linked list in C.

 Don't forget C.
 Pointers in C and Java.

■ Do you have any questions about the 
assignment?

■ Do you have any questions about the reading?



3

Iterators

■ Direct access on linked lists is very inefficient. 
How then should we walk through a list with 
outside code? Remember that the outside code 
doesn't have access to the nodes so it can't use 
the style of loop we have been doing internally.

■ The concept of an Iterator is something that 
abstracts the process of walking through all of the 
elements in a container. Iterators can not only be 
efficient, they also make code more flexible 
because they don't depend on the implementation 
details of the containers.



4

Iterating Lists

■ An iterator basically needs to encapsulate the 
information and functionality we would put into a 
standard method of going through a container.

■ With this in mind, what do we need to put in an 
iterator for an array based list?

■ What would we put in an iterator for a linked list?



5

Graphics in Java

■ You can do lots of things with the standard GUI 
elements in Swing. We've been able to set up 
quite a bit of a GUI using that. However, no GUI 
can predict everything that you will want to do and 
we want to be able to add custom drawing to our 
application.

■ For this we will rely on the Java2D library. Java2D 
was added about the same time Swing was and it 
is fundamentally based on the Graphics2D class. 
There is also a Graphics class that provides more 
basic custom graphics capabilities. Graphics2D 
inherits from Graphics so it can do all the same 
things and more.



6

Making Custom Drawn Components

■ There are three steps to making a component 
class that we can do custom drawing to.
 Make a new class and have it inherit from JComponent 

or a subtype of it. We'll use JPanel.
 Override the paintComponent method in your class.
 Draw with the Graphics object that was passed into the 

paintComponent method.
■ Let's look a bit at the Graphics2D class to see 

what some of the possibilities might be for what 
we can draw.

■ Now we can do these steps in our program to 
make a central panel we can draw to.



7

Settings

■ There are several things that we can set on the 
Graphics2D object that are used when we draw 
things. Here are some:
 Paint – could be a color, but there are also gradients 

and textures
 Stroke – determines how lines are drawn
 Font – how you want text to appear
 Transform – AffineTransform allows translate, rotate, 

scale, or shear
 Composite – how colors combine when you draw over 

old stuff
 Clip – where your drawings will appear
 Render hints – other things like antialiasing



8

More General Drawing

■ Of course, Graphics2D objects aren't limited to 
just drawing on components.

■ The Image class (and it's subtype BufferedImage) 
will let you get Graphics objects that you can draw 
to and what you draw will be on the image.

■ We'll typically do this even if we are drawing to a 
component to implement buffering which reduces 
flicker.



9

Coding

■ Let's play with our panel some to experiment with 
the drawing options.



10

Minute Essay

■ What do you think we should try adding to our 
drawing program given that we now know how to 
draw?

■ Interclass Problem – Write a simple drawing 
program similar to Paint. Use buttons for selecting 
at least rectangles, ellipses, and lines. Use the 
mouse to draw things. Have color options with 
JColorChooser.


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

