
1

Concurrency and Files

4-15-2010

2

Opening Discussion

■ Let's look at solutions to the interclass problem.
■ Do you have any questions about the

assignment?
■ Let's quickly go over remove on the tree.

3

java.util.concurrent

■ While support of threading was built into the
original version of Java, some common threading
tasks still aren't easy.

■ There are some things that you find yourself doing
rather frequently with threaded code and there are
some limitations with the basic libraries that make
it difficult to use at times.

■ The java.util.concurrent library was added to make
common parallel tasks easier. It is built around a
few key concepts. Let's go look at the javadocs for
this library.

4

Executor Interface

■ The heart of the concurrent library is the Executor
interface. It provides a method for running a
Runnable object, but tells you nothing about how it
will be run.

■ The commonly used subtype of Executor is
ExecutorService that supports the Callable<T>
interface and Future<T> objects.

■ The Executors utility class gives you a way to
create some commonly used ExecutorServices.

5

Blocking Queues

■ One handy data structure in parallel applications
is a blocking queue. This is a queue with a fixed
number of slots in it.

■ If you try to dequeue when the queue is empty,
the thread will block until another thread adds
something.

■ If you try to enqueue when the queue is full, the
thread will block until another thread removes
something.

6

Coordinating Threads

■ The concurrent library also provides a number of
different classes to help with coordinating the
activities of threads.
 Semaphores – holds a number of “permits” that can be

given out to threads.
 CountDownLatch – stops threads until they have all hit

the latch. Only works once.
 Exchanger – two threads swap information at a

particular point.
 CyclicBarrier – like the CountDownLatch but works

multiple times.

7

Atomic and Locks

■ There are two subpackages for
java.util.concurrent: atomic and locks.

■ The java.util.concurrent.atomic package provides
data types that have atomic access methods.
These methods can't be interrupted by other
threads so they can be done in a thread safe way.

■ In java.util.concurrent.locks you will find classes
for locks that can be used in your program.
Locking is basically what the synchronized
keyword does, but that can't be shared across
objects or methods.

8

Multithreading Code

■ Let's go ahead and and write something
multithreaded. Instead of using the standard
thread library I want us to use the facilities in
java.util.concurrent.

9

I/O Streams

■ The basic input and output streams that we use
for I/O in Java are part of the java.io package.

■ The package uses significant inheritance with the
hierarchies rooted in the InputStream,
OutputStream, Reader, and Writer abstract
classes. The first two provide I/O based on bytes
while the other two use characters.

■ These base classes have very little functionality
themselves and being abstract they can't even be
instantiated.

10

File Streams

■ In order to use streaming you have to be able to
instantiate something. One set of classes that you
can instantiate is the set of file streams.

■ These classes are FileInputStream,
FileOutputStream, FileReader, and FileWriter.

■ Let's go look at these really quick.

11

The File Class

■ java.io.File is a really handy class. It represents a
file or directory, but it has many operations that
make dealing with files across platforms easy.

12

Wrapping Streams

■ The file stream classes still don't do much, they
just do what their base class does except they are
actually attached to a file.

■ Being able to just read or write bytes is technically
sufficient for any task, but you wouldn't want to
write much code that way.

■ We gain functionality by “wrapping” stream objects
around one another. This is a design pattern
called the Decorator.

■ Example decorations include buffering,
functionality for binary I/O
(DataInputStream/DataOutputStream), or
formatted printing (PrintWriter).

13

Coding Streams

■ We want to write some code that uses files and
streams. A good example of this would be a
simple text editor.

■ We can add this functionality to our drawing
program or you can write a standalone
application. All it requires is a JTextArea in a GUI
with save and load options.

14

Power of Serialization

■ Now we can take the next step. I want our drawing
application to have the ability to save and load full
drawings. What do we need to change in the code
to make this happen? We basically have to take
the entire object for our tree and write it out to file
one element at a time.

■ The task of converting an object into a stream of
bytes is called serialization. In most languages it is
a tough thing to do. Fortunately, Java has built in
functionality to provide serialization.

15

Serializing in Java

■ To make it so that an object can be serialized we
simply inherit from the interface Serializable. This
is a “mix-in” interface that doesn't have any
methods.

■ The ObjectOutputStream and ObjectInputStream
can be used to write and read whole objects that
are Serializable. If it, or some part of it, isn't
Serializable an exception will be thrown.

■ Elements that you don't want written (or that can't
be written) can be labeled as transient.

16

Challenges

■ “With great power comes great responsibility.”
■ Serialization is truly powerful, but you shouldn't

just make everything Serializable because there
are costs.

■ Anything that inherits from a Serializable
class/interface is itself Serializable.

■ The default serialization can be expensive and
potentially leads to security holes where people
can find out about details of your objects that are
otherwise private.

17

Minute Essay

■ What questions do you have about streams and
files? How does the use of the decorator pattern
improve the flexibility of the library?

■ Interclass problem – Create a program that will
write an array of random doubles to a file and read
it back in. Do this in two ways: using data streams
and using object streams.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

