
1

Heap Based Priority Queues

4-22-2010

2

Opening Discussion

■ Do you have any questions about the quiz?
■ Solutions to the interclass problem.
■ Do you have any questions about the

assignment?
■ Minute essay comments

 Security with sockets?
 Examples of when to use UDP.
 Dealing with firewalls.
 Is it a problem if sockets are used at the same time?
 Does the server stay open forever?
 What happens if the message doesn't get through?
 Changing the class examples to a different program?

3

Heaps

■ When you implemented the priority queue for your
game, you used a sorted linked list. This data
structure has the disadvantage that adding takes
O(n) time. For data structures we try to avoid O(n)
if at all possible for the common operations
because it typically leads to O(n2) overall
performance.

■ There is another data structure we can use to
implement that priority queue called a heap.
Using a heap, none of the operations will be
worse than O(log n).

■ There are actually many types of heaps. We will
be doing the simplest type, the binary heap.

4

Binary Heaps as Trees

■ You can view a binary heap as a type of binary
tree, though our final implementation will not
actually use a binary tree.

■ Binary heaps are complete trees that have heap
ordering.
 A complete tree is one that only starts filling the next

row after the one above it is completely full. We will fill
rows from left to right adding in new nodes until we
have to move down to the next row.

 Heap ordering is simply the property that each node
has a higher priority than its children. So in your game
each node would have an entity with a lower update
time than the children.

5

Adding and Removing

■ When we add to a binary heap we simply place
the new element at the next free spot on the tree.
We then have to shift things to restore heap
ordering. We refer to the new node as a bubble
which moves up through the tree until it comes to
rest.

■ The only item we can remove from the tree is the
root, which has the highest priority thanks to the
heap ordering. To keep the heap complete we
move the last element up to the root and let it sink
down through the tree until it comes to rest.

■ Both of these operations are always O(log n)
because the heap is complete.

6

Heaps as Arrays

■ The tree structure is nice for visualizing the heap,
but it is extremely inefficient for implementation.

■ If we order the nodes starting at 1 you will see
nice mathematical relationships between parents
and children. We use this numbering as an index
into a array and store the heap in an array or an
array based list.

7

Code

■ I'm not going to write a heap for you because that
is your main task in assignment 7. Instead I would
like to fill in some of the holes in our drawing
program.

■ If we can get add to use the tree structure properly
then perhaps we can make transforms that use
our formula class and get the slider to adjust a
variable for the formula.

8

Minute Essay

■ Why are the add and remove operations on a
binary heap always O(log n) when a normal binary
tree can't promise that?

■ Interclass Problem – Add commands to the
drawing project for “connect” and “chat” that can
connect to another drawing program and send
chat messages.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8

