
1

Generics, Enums, and Exceptions

2/3/2009

2

Opening Discussion

■ Do you have any questions about the quiz?
■ Let's look at solutions to the interclass problem.
■ Minute essay comments

 Why interfaces have no code reuse but allow multiple
inheritance.

 Feeling overwhelmed?
 When would you use a local inner class?
 Why make classes static?
 My preferences: OS, PL, Skating rink.
 How does computer hacking work?
 Utility classes.

■ Do you have any questions about the reading?
■ Do you have any questions about the

assignment?

3

Eclipse and Scanners

■ Beginning this week we will start doing our coding
in Eclipse. Let's open Eclipse and look around it
quickly.

■ With Eclipse we can't create objects and call
methods on them the way we could in BlueJ.
Instead, we will have to put in a main and run that.

■ The easiest way to do simple text input in Java is
with a java.util.Scanner. Let's write a little
program to see how this works.

4

Generics

■ The most significant feature added to Java 5.0
was that of generics. Generics provide a form of
parametric polymorphism, typically for code that
can take any type, but might be limited to a
specific type for one instance.

■ The most common use of this is for containers.
Container classes typically should be able to hold
anything, but any one container is generally
intended to hold only one type.

■ In practice, generics give you extra type safety
and prevent you from doing a lot of type casts.

5

Making General Typesafe

■ The problem with using the Object type for
general polymorphism is that it many different type
checks have to be done at runtime and you lose
static type safety.

■ Using generics we can take our general function
interface and make it static typesafe.

■ How can you combine these more general types
of functions?

6

Enums

■ C had enums. What were they supposed to do?
What was the problem with them?

■ Java includes enums as well. They serve the
same goals, but lack the pitfalls.

■ Java enum syntax can get quite complex, but the
basic form is simple and very similar to C.

7

Error Handling

■ How did you handle errors in C? (Consider the
fopen function.)

■ What are some problems with this method?

8

Exceptions

■ Error handling in Java is done with exceptions, not
return values or flags.

■ Normal exceptions can't be ignored and they don't
propagate. Runtime exceptions don't propagate.

9

Syntax

■ For anything that isn't a RuntimeException you
have to include handling code. For
RuntimeExceptions it is optional.

■ If you want to deal with a possible exception in the
current method do this:
 try {

➔ statements
 } catch(ExceptionType1 e) {

➔ statements
 } [catch(ExceptionType2 e) { ...} ...]

■ If this method can't handle it you add a throws
clause to the method and it will go up to the calling
method.
 Type name(args) throws ExType[,...] {...}

10

Additional Information

■ Exceptions also have the advantage that they can
provide additional information.

■ Stack trace.
■ Informative message.
■ You can create your own exception classes. Strive

to have them provide sufficient information for
debugging.

11

Minute Essay

■ Do you have any questions about Java as a
language? We are now moving from the language
to libraries and problem solving.

■ Interclass Problem – Write a program that uses a
Scanner to read the contents of a file. The hint is
that you will have a line something like Scanner
sc=new Scanner(new File(“filename.txt”));. You
can decide what to do with the contents. Be
creative. You might consider methods like
Double.parseDouble().

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

