
  

Linked Lists

2-14-2011



  

Opening Discussion

 Do you have any questions about the 
assignment?

 Minute Essays
 Stacks of queues and queues of stacks.
 How do you use lists for this?
 What is left to learn after this class?

 What is a list?  What are the things that you can 
do with a list?



  

The List/Sequence ADT

 The next step up the ADT ladder is the list or 
sequence. Basically a list provides general access 
so you can add, remove, or search for things at 
random locations in the list.

 This type of functionality is provided without 
mutation by a Seq in Scala.  With mutation it is the 
Buffer.



  

An Array Based List

 So how could we implement our list interface 
using an array?

 What methods of that implementation would be 
“fast”? Which ones would be “slow”?

 What do the terms fast and slow mean here in O 
terms and what operations are being considered 
for that?



  

Linked Lists

 There is an alternate method of implementing the 
list interface called the linked list. It is strong 
where an array list is weak, but weak where an 
array list is strong.

 A linked list is made of nodes and each node 
knows about one or two of its neighbors (has 
pointers to them).

 We move around linked lists by “walking” from 
node to node.

 Adding and removing can be very fast and always 
require very few memory writes.



  

Types of Linked Lists

 Linked lists can be implemented in many ways. 
The basic characteristic is that we only keep a 
reference to one node and nodes then link to one 
another.

 The linking can be single or double. A doubly 
linked list has nodes that know about both the 
next and the previous elements.

 Linked lists can also be circular. In a circular 
linked list, the first element links around to the 
back one.

 For optimization purposes, lists can keep track of 
a head and a tail, but that isn't required.



  

Implementing a Singly Linked 
List
 Let's work together to build an implementation of a 

singly linked list.
 We will implement the Buffer trait.  It has eight 

abstract methods that we will be forced to 
implement to get everything else.



  

Sentinels

 A sentinel is an extra node in the list the 
represents the “end” of the list and doesn't store 
data.

 The purpose of the sentinel is to remove special 
cases. The next of the sentinel is what we have 
called head.

 They are most useful in a doubly linked list where 
the previous of the sentinel is tail.



  

Implementing a Doubly Linked 
List

 Now let's implement java.util.List with a doubly 
linked list with a sentinel. The list will also be 
circular.

 You should notice that this implementation never 
has to check for null because no references in the 
list should ever be null. This simplifies the code 
significantly. We also implicitly get a head and a 
tail with no extra work. If you don't have a sentinel 
you will write a lot of extra checks for nulls and 
even more to include a tail.



  

Minute Essay

 Any questions?
 Quiz #3 will be next class.


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

