

Linked Lists and Iterators

2-18-2011

Opening Discussion

 Do you have any questions about the
assignment?

 Minute Essays
 When should you use linked lists?

Iterators

 Direct access on linked lists is very inefficient.
How then should we walk through a list with
outside code? Remember that the outside code
doesn't have access to the nodes so it can't use
the style of loop we have been doing internally.

 The concept of an Iterator is something that
abstracts the process of walking through all of the
elements in a container. Iterators can not only be
efficient, they also make code more flexible
because they don't depend on the implementation
details of the containers.

Iterating Lists

 An iterator basically needs to encapsulate the
information and functionality we would put into
a standard method of going through a
container.

 With this in mind, what do we need to put in an
iterator for an array based list?

 What would we put in an iterator for a linked
list?

Sentinels

 A sentinel is an extra node in the list the
represents the “end” of the list and doesn't
store data.

 The purpose of the sentinel is to remove
special cases. The next of the sentinel is what
we have called head.

 They are most useful in a doubly linked list
where the previous of the sentinel is tail.

Implementing a Doubly Linked
List

 Now let's implement our List interface with a
doubly linked list with a sentinel. The list will
also be circular.

 You should notice that this implementation
never has to check for null because no
references in the list should ever be null. This
simplifies the code significantly. We also
implicitly get a head and a tail with no extra
work. If you don't have a sentinel you will write
a lot of extra checks for nulls and even more to
include a tail.

Minute Essay

 Why is using an iterator better than calling apply
repeatedly for a linked list?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7

