

Refactoring (and maybe some
Recursion)

2-23-2011

Opening Discussion

 Minute essays responses:
 Why we write both versions of stacks/queues? Why we

write basic data structures.

 Making Transforms works in Drawer.

Refactoring

 This is something that you do when you don't want to
change the functionality of your code, but you want to
change how it does something.

 You typically refactor your code when it “smells.” Here
are a few of the many different smells.
 Long method
 Large class
 Duplicate code
 Shotgun surgery
 Switch statements

 Scala tools don't yet refactor well, but the language does.

Recursion

 You should have learned about recursive
functions in PAD1. A recursive function is simply a
function that calls itself.

 You can use recursion to imitate loops, but we
won't do that very often in C/Java/Scala. Where
recursion comes in really handy is when a function
needs to test more than one alternative at a time.

 This works nicely because the call stack
remembers where you are in a given function so
when you return back, you can take off from that
point again.

Maze Solving

 One of my favorite recursive algorithms is maze
solving. This is a special case of graph traversals
which are common problems in CS.

 We'll use a 2D array of Ints as our maze and we
can even put this into our drawing program.

 I want to write code to find the shortest path
through a maze or count all paths through a maze.

 We can try to make this nice and graphical as well
so it fits properly into our drawing program.

Formula Parsing

 Another one of my favorite recursive algorithms is
formula parsing. This allows us to have the user
type in a function and our code can evaluate it.

 We do this through “divide and conquer”. We split
the formula in two across the lowest precedence
operator then recursively evaluate the two halves.

 We can use this to put function plotting into our
program if we give it the ability to handle a
variable.

Minute Essay

 When is recursion better than loops and what
makes it more powerful?

 We have the midterm Friday. Review session from
6:00-7:00.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7

