

Grammars

3-21-2011

Opening Discussion

 How many of you have used regular
expressions before?

 Please do come talk to me about assignments
of send me e-mails. You are still the
experimental group. I need to figure out what
has to change for the future.

Formal Languages

 Today we will introduce the concept of formal
languages and grammars.

 These are formal sets of rules for building
strings. The rules determine what strings are in
a particular language.

 There are many ways of specifying languages.
We will focus on the one that is most broadly
used today.

Chomsky Grammars

 Noam Chomsky developed a hierarchy of
grammar types that could be used to specify
different languages.
 Regular
 Context-Free
 Context-Sensitive
 Recursively Enumerable

 Each of these can also be associated with a
different type of machine or automaton.

Nature of Chomsky Grammars

 Chomsky grammars have terminals and non-
terminals. Normally a terminal is lowercase and
a non-terminal is uppercase.

 There is a special non-terminal called the start
symbol, S.

 A string in “complete” when it contains only
terminals.

 Rules specify what a non-terminal can be
replaced with.

Regular Grammars

 The simplest Chomsky grammar type is the
regular grammars. There are only two types of
allowed rules:
 A → a
 A → aB

 Note that 'A' and 'B' represent any non-
terminals and 'a' is any terminal.

 Equivalent to a finite state automaton. Have no
memory.

Context-Free Grammars

 Allow more general rules:
 A → γ

 Where γ is any combination of terminals and
non-terminals.

 Equivalent to a pushdown automaton. Has
memory, but only as a stack.

 These are how we specify the syntax of
programming languages. Can describe almost
all natural language.

Context-Sensitive Grammars

 Takes surrounding characters into account:
 αAβ → αγβ

 Equivalent to a linear bounded non-determinstic
Turing machine.

 Not used all that much because of challenges.
Needed for some elements of natural language.

Recursively Enumerable
Grammars

 Allows basically any transformation.
 α → β

 There are no bounds on what these can be.
 This is equivalent to a Turing machine. That

means that you could calculate anything you
want using one of these.

Regular Expressions

 One if the applications of these formal systems
is the use of regular expressions to perform
String operations.

 Scala has a class called
scala.util.matching.Regex. You can get one of
these by calling the r method on a String.

 This wraps the functionality of
java.util.regex.Pattern and provides Scala style
functionality and pattern matching.

 Let's look at API entries.

Minute Essay

 Questions?
 There is an IcP next class.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

