

Combinatorial Parsers

3-25-2011

Opening Discussion

 Do you have any questions about the quiz?
 Limits of RegEx:

 Yes, there are limits.
 Your understanding of them can be a part.
 Readability can be an issue.

 RegEx are pretty much limited to regular
grammars.

CF Grammars and Internal DSLs

 There are times when you might want to
include elements in your programs that go
beyond regular grammars.

 An example of this would be an internal DSL
(Domain Specific Language). This is like a little
language that is understood in your program.

 Mathematical formulas count as these, but so
would simple commands that have some
structure to them.

Example CF Grammar

 Here is a CF grammar for math expressions:
 expr ::= term { “+” term | “-” term }
 term ::= factor { “*” factor | “/” factor }
 factor ::= floatingPointNumber | “(“ expr “)”

 Use {} for 0 or more and [] for 0 or 1.
 Lots of languages here:

 http://www.antlr.org/grammar/list

http://www.antlr.org/grammar/list

Scala Parsers

 import scala.util.parsing.combinator._

 class Arith extends JavaTokenParsers {

 def expr:Parser[Any] = term~rep(“+”~term | “-”~term)
 def term:Parser[Any] = factor~rep(“*”~factor | “/”~factor)
 def factor:Parser[Any] = floatingPointNumber | “(“~expr~”)”

 }

Conversion Rules

 Put in a class that extends one of the Parsers.
 Productions become methods.
 Results are Parsers. Next class we'll see how to

make it more specific than Any.
 Consecutive symbols are adjoined with ~.
 The {...} is replaced with rep(...).
 The […] is replaced with opt(...).

Using the Parser

 Call parseAll or parse on your class.
 Takes two arguments:

 First argument is the parser to use.
 Second argument is the string to parse.

 Let's code this all up and see it in action.

Minute Essay

 Questions? Can you think of anyplace you
might use this?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8

