

Heap Based Priority Queues

4-6-2011

Opening Discussion

 Minute essay comments
 Complexity of kD-tree code.
 How do I code so fast?

 Solutions to the interclass problem.
 Testing our kD-tree.

Heaps

 We previously implemented a priority queue using a
sorted linked list. This data structure has the
disadvantage that adding takes O(n) time. For data
structures we try to avoid O(n) if at all possible for the
common operations because it typically leads to O(n2)
overall performance.

 There is another data structure we can use to
implement a priority queue called a heap. Using a
heap, none of the operations will be worse than O(log
n).

 There are actually many types of heaps. We will be
doing the simplest type, the binary heap.

Binary Heaps as Trees

 You can view a binary heap as a type of binary
tree, though our final implementation will not
actually use a binary tree.

 Binary heaps are complete trees that have
heap ordering.
 A complete tree is one that only starts filling the

next row after the one above it is completely full.
We will fill rows from left to right adding in new
nodes until we have to move down to the next row.

 Heap ordering is simply the property that each node
has a higher priority than its children.

Adding

 When we add to a binary heap we simply place
the new element at the next free spot on the
tree. We then have to shift things to restore
heap ordering. We refer to the new node as a
bubble which moves up through the tree until it
comes to rest.

Removing

 The only item we can remove from the tree is
the root, which has the highest priority thanks to
the heap ordering. To keep the heap complete
we move the last element up to the root and let
it sink down through the tree until it comes to
rest.

 Both of these operations are always O(log n)
because the heap is complete.

Heaps as Arrays

 The tree structure is nice for visualizing the
heap, but it is extremely inefficient for
implementation.

 If we order the nodes starting at 1 you will see
nice mathematical relationships between
parents and children. We use this numbering as
an index into a array and store the heap in an
array or an array based list.

Code

 Let's write a binary heap.

Minute Essay

 Why are the add and remove operations on a
binary heap always O(log n) when a normal
binary tree can't promise that?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9

